Physics, asked by Physicsq212, 11 months ago

A spring ball of mass 0.5 kg is dropped frome some height on falling freely for 10 s it explodes into two fragments of mass ratio 1 :2 the lighter fragment continues to travel downwards with speed of 60 m/s calculate the kinetic energy supplied during the explosion

Answers

Answered by Anonymous
17

Answer:

hey mate

Explanation:

here is your answer

given

m = 0.5 kg

g = 10 m/s²

free fall for 10 s

M1 /M2 = 1/2 M1 + M2 = 0.5 kg

v of M1 = 60 m/s

= M1 = m2/2

solution

M1 + M2 = 0.5 kg

 =  \frac{m2}{2}  + m2 \:  =  \: 0.5kg

 \frac{3}{2} m2  =  \: 0.5 \:  \frac{1}{2}

M2 = 1/3 kg

m1 \:  =  \frac{m2}{2}  =  \frac{1}{6} kg

free fall of m : v = GT = 10 × 10 = 100 m/

The corresponding KE of m = 1/2 mv²

 =  \frac{1}{2}  \times 0.5 \:  \times  {(100)}^{2}  =  \:  \frac{0.5 \:  \times 100 \:  \times  \: 100}{2}

= 2500 joule

KE of M1 = 1/2 m1v1² = 1/2 × 1/6 × (60)²

 =  \frac{60 \times 60}{2 \times 6}  = 300j

by momentum conversation

MV = m1v1 + m2v2

0.5 \:  \times  \: 100 \:  =  \frac{1}{6}  \times 60 \:  +  \frac{1}{3} v2 \:  = 10 \:  +  \frac{ {v}^{2} }{3}

v²/3 = 50 -10 = 40 V2 = 120 M/S

ke \: of \:m2 \:  =  \frac{1}{2}  {m2v2}^{2}  =  \frac{1}{2}  \times  \frac{1}{3}  \times  {(120)}^{2}

 =  \frac{120 \times 120}{6}  = 20 \times 120 \:  = 2400j

total KE of the fragments = 300 + 2400

= 2700j

KE of the ball just before the explosion = 2500 joule

Hence the KE supplied during the explosion

= 2700 j - 2500 j = 200 j

thanku

Similar questions