Physics, asked by manish669, 6 months ago

A spring has a diameter of 1cm and the original length of 2cm, the string is pulled by a force of 200N, determine the change in length of the string. Young's modulus of the string =5×10^9N/m^2​

Answers

Answered by Anonymous
25

\;\;\underline{\textbf{\textsf{ Given :-}}}

 \\

•Diameter, d = 1 cm = 0.01 m

•Original length, L = 2 cm = 0.02 cm

•Force applied, F = 200 N

•Young's modulus of the string, Y = 5 × 10⁹ N/m²

 \\

\;\;\underline{\textbf{\textsf{ To Find  :-}}}

 \\

•The change in length of the string.

 \\

\;\;\underline{\textbf{\textsf{ Solution :-}}}

 \\

Let the change in length of the string be 'l'

 \\

We know that :-

 \\

\sf{A=\pi r ^2}

Substitute the given values

 \\

\sf{ \dashrightarrow A=\dfrac{22}{7} \times \bigg( \dfrac{d}{2} \bigg) ^2}

\sf{\dashrightarrow  A=\dfrac{22}{7}\times\bigg( \dfrac{0.01}{2} \bigg)^2}

\sf{ \dashrightarrow A=\dfrac{22}{7}\times (0.005)^2 }

\sf{\dashrightarrow  A=\dfrac{22}{7} \times 0.000025}

\sf{\dashrightarrow  A=0.0000785}

\sf{\dashrightarrow A=785\times 10^{-6}\ m^2}

 \\

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Again, we know that :-

 \\

\boxed{\tt{Y=\dfrac{FL}{Al} }}

 \\

\sf{\dashrightarrow 5\times 10^9=\dfrac{200\times0.02}{785\times 10^{-6}\times l} }

\sf{ \dashrightarrow 5l \times 785 \times 10^9 \times 10^{-6}=200\times 0.02}

\sf{ \dashrightarrow 5l\times785\times 10^{9-6}=4}

\sf{\dashrightarrow 5l\times 10^3\times392.5=1}

\sf{ \dashrightarrow 5l \times 392500=1}

\sf{\dashrightarrow  l=5.09 \times 10^{-7}\ m}   (approx.)

 \\

\;\;\underline{\textbf{\textsf{ Hence-}}}

\underline{\textsf{ The change in length of the string is \textbf{ 5.09×10⁷ }}}.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Gripex
0

Answer:

stepbby step 5×10^-7.........

Similar questions