(a square -2 a ) square -23(a square -2a)+120
Answers
Answered by
2
Answer:
Attachments:
Answered by
1
((a^2) - 2a)^2 - 23((a^2) - 2a) + 120 = 0
Let (a^2) - 2a = x ——> 1
x^2 - 23x + 120 = 0
Splitting the middle term,
x^2 - 8x - 15x + 120 = 0
x(x - 8) - 15(x - 8) = 0
(x - 8)(x - 15) = 0
x - 8 = 0, x - 15 = 0
x = 8, 15
Substituting x = 8 in equation 1 we get,
(a^2) - 2a = 8
(a^2) - 2a - 8 = 0
(a^2) - 4a + 2a - 8 = 0
a(a - 4) + 2(a - 4) = 0
(a + 2)(a - 4) = 0
a = -2, 4
Substituting x = 15 in equation 1 we get,
(a^2) - 2a = 15
(a^2) - 2a - 15 = 0
(a^2) - 5a + 3a - 15 = 0
a(a - 5) + 3(a - 5) = 0
(a + 3)(a - 5) = 0
a = -3, 5
There roots of the qiven biquadratic equation are, a = -2, -3, 4 & 5 ——> Answer
Let (a^2) - 2a = x ——> 1
x^2 - 23x + 120 = 0
Splitting the middle term,
x^2 - 8x - 15x + 120 = 0
x(x - 8) - 15(x - 8) = 0
(x - 8)(x - 15) = 0
x - 8 = 0, x - 15 = 0
x = 8, 15
Substituting x = 8 in equation 1 we get,
(a^2) - 2a = 8
(a^2) - 2a - 8 = 0
(a^2) - 4a + 2a - 8 = 0
a(a - 4) + 2(a - 4) = 0
(a + 2)(a - 4) = 0
a = -2, 4
Substituting x = 15 in equation 1 we get,
(a^2) - 2a = 15
(a^2) - 2a - 15 = 0
(a^2) - 5a + 3a - 15 = 0
a(a - 5) + 3(a - 5) = 0
(a + 3)(a - 5) = 0
a = -3, 5
There roots of the qiven biquadratic equation are, a = -2, -3, 4 & 5 ——> Answer
Similar questions