Math, asked by hansini19, 10 months ago

a square - 4a -1=0 find a - 1/a , and a + 1/a​

Answers

Answered by BrainlyConqueror0901
17

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{a-\frac{1}{a}=4}}}\\

\green{\tt{\therefore{a+\frac{1}{a}=2\sqrt{5}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt:  \implies  {a}^{2}  - 4a - 1 = 0 \\  \\\red{\underline \bold{To \: Find:}} \\  \tt:  \implies a -  \frac{1}{a}  = ? \\  \\ \tt:  \implies a -  \frac{1}{a}  = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  {a}^{2}  - 4a - 1 = 0 \\  \\  \tt:  \implies  a =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}  \\  \\  \tt:  \implies a =  \frac{ - ( - 4) \pm \sqrt{ { (- 4)}^{2} - 4 \times 1 \times ( - 1) } }{2 \times 1}  \\  \\  \tt:  \implies a =  \frac{4 \pm \sqrt{16 +4} }{2}  \\  \\  \tt:  \implies a =  \frac{4 \pm \sqrt{20} }{2}  \\  \\  \tt:  \implies a =  \frac{4 \pm2 \sqrt{5} }{2}  \\  \\   \green{\tt:  \implies a = 2\pm  \sqrt{5} } \\  \\  \bold{For \: finding \: value} \\  \tt:  \implies a -  \frac{1}{a}  \\  \\  \tt:  \implies 2 +  \sqrt{5}  -  \frac{1}{2 -  \sqrt{5} }  \\  \\  \tt:  \implies  2 +  \sqrt{5}  - \frac{1}{2 -  \sqrt{5} }  \times  \frac{2 +  \sqrt{5} }{2 +  \sqrt{5} }  \\  \\  \tt:  \implies 2 +  \sqrt{5}  -  \frac{2 +  \sqrt{5} }{4 - 5}  \\  \\  \tt:  \implies 2 +  \sqrt{5}   -(  - 2 +  \sqrt{5} ) \\  \\  \tt:  \implies 2 +  \sqrt{5}  + 2 -  \sqrt{5}  \\  \\   \green{\tt:  \implies a -  \frac{1}{a} =  4} \\  \\  \bold{Similarly : } \\  \tt:  \implies  a +  \frac{1}{a}  \\  \\  \tt:  \implies 2 +  \sqrt{5}  +  \frac{1}{2 - \sqrt{5} }  \\  \\ \tt:  \implies 2 +  \sqrt{5}  +  \frac{1}{2 -  \sqrt{5} }  \times  \frac{2 + \sqrt{5} }{2 + \sqrt{5} }  \\  \\ \tt:  \implies 2 +  \sqrt{5}  +  \frac{2 + \sqrt{5} }{4 - 5}  \\  \\ \tt:  \implies 2 + \sqrt{5}   + ( - 2 +  \sqrt{5} ) \\  \\ \tt:  \implies 2 +  \sqrt{5 }  - 2  +  \sqrt{5}  \\  \\  \green{\tt:  \implies  a +  \frac{1}{a}  = 2\sqrt{5}}

Answered by Anonymous
14

Answer:

Given :-

a²-4a - 1=0

To find :-

a -  \frac{1}{a}  \:  = \: ?  \\ a +  \frac{1}{a}  \:  =  \: ?

Solution :-

a \:  =  \frac{ - b +  -  \sqrt{ {b}^{2}  - 4ac} }{2a}

a =  \frac{( - 4) +  -  \sqrt{ {( - 4)}^{2} } - 4 \times 1 \times  - 1 }{2 \times 1}

a =  \frac{4 +  -  \sqrt{16 + 4} }{2}

a \:  =  \frac{4 +  -  \sqrt{20} }{2}

a \:  =  \frac{4 +  - 2 \sqrt{5} }{2}

a = 2 +  \sqrt{5} \:  or \: 2 -  \sqrt{5}

Now for finding the value,

a -  \frac{1}{a}

2 +  \sqrt{5}  -  \frac{1}{2 +  \sqrt{5} }

2 +  \sqrt{5}  -  \frac{1}{2 +  \sqrt{5} }  \times  \frac{2 -  \sqrt{5} }{2 -  \sqrt{5} }

2 +  \sqrt{5}  -  \frac{2 -  \sqrt{5} }{4 - 5}

2 +  \sqrt{5}  - ( - 2  +  \sqrt{5} )

=4

Therefore,

a -  \frac{1}{a}  = 4

And,

a +  \frac{1}{a}

2 +  \sqrt{5}  +  \frac{1}{2 +  \sqrt{5} }

2 +  \sqrt{5}  +  \frac{1}{2 +  \sqrt{5} }  \times  \frac{2 -  \sqrt{5} }{2 -  \sqrt{5} }

2 +  \sqrt{5}  +  \frac{2 -  \sqrt{5} }{4 - 5}

2 +  \sqrt{5}   - (2 -  \sqrt{5} )

=2 \sqrt{5}

Therefore,

a +  \frac{1}{a}  = 2 \sqrt{5}

Similar questions