a square abcd is inscribed in a circle of radius r . find area of the square
Answers
Answered by
5
To Find:-
The area of the square
Solution:-
Answer:
2r² square unit.
step-by-step explanation:
Let the diameter of the square be " d "
And the circumscribed circle of radius " r "
By the problem,
we know that,
the diameter of the circle is equal to the diagonal of the square
Now,
The area of Square
So, The area of the square is ABCD = 2r² square unit.
______________________________
Answered by
1
Answer: PRA**** MARK IT AS BRAINLIEST AND THANK IT PLZ
HEY .. HERE IS YOUR ANSWER ,
If the radius is r so diameter will be 2r ..
And the diameter is acting as diagonal of the inscribed square
let the side of the square be 'a '
USING PHYTHAGORAS THEOREM ,
a² +a² = (2r)²
⇒ (2a) ²= 4r²
⇒ 2a² = 4r²
a = 2r
AREA OF SQUARE = SIDE ²
AREA = 2r²
Step-by-step explanation:
Similar questions