Math, asked by Anonymous, 2 months ago

A square and a rectangle have the same perimeter. Calculate the area of the rectangle if the side of the square is 60 cm and the length of the rectangle is 80 cm.​

Answers

Answered by meru7
1

Answer:

Area of the Rectangle =

3200 \:  {cm}^{2}

Step-by-step explanation:

Let,

The side of the square, x = 60 cm

The sides of the rectangle are a = 80 cm and b

Parameter of rectangle = Parameter of square

or,

2(a + b) =  4x

2(80 + b) =   4 \times 60

b = 40

The area of the rectangle = ab = 80×40 =

3200 \:  {cm}^{2}

Answered by Anonymous
25

Given :

  • A square and a rectangle have the same perimeter.
  • the side of the square is 60 cm and the length of the rectangle is 80 cm.

To Find :

  • Calculate the area of the rectangle

Diagrams :

Square :

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(4,0){2}{\line(0,1){4}}\multiput(0,0)(0,4){2}{\line(1,0){4}}\put(-0.5,-0.5){\bf D}\put(-0.5,4.2){\bf A}\put(4.2,-0.5){\bf C}\put(4.2,4.2){\bf B}\put(1.5,-0.6){\bf\large 60\ cm}\put(4.4,2){\bf\large 60\ cm}\end{picture}

Rectangle :

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large 80 cm}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large 40 cm}\end{picture}

Solution:

Now,

  • Let's find the perimeter of the square

{ : \implies} \tt \: 60cm \:  \times 4 \\  \\  \\ { : \implies} \tt \: 240cm \:  \:  \:  \:  \:

As we know that,

  • Perimeter of the square is equal to the perimeter of the rectangle so the perimeter of the rectangle is 240

According to the question,

  • The length of the rectangle is 80cm

{ : \implies} \tt \: 2(l + b) = 240cm  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \\  \\ { : \implies} \tt \: 2(80cm + b) = 240cmm \\  \\  \\ { : \implies} \tt \: 160cm \:  + 2b = 240cm \:  \:  \\  \\  \\ { : \implies} \tt \: 2b = 240 - 160 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\ { : \implies} \tt \: 2b = 80cm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \tt \: b =  \frac{80}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} { \pink{ \boxed{ \tt{b = 40cm}} \star}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

So,

  • Let's find the area of the rectangle

{ : \implies} \tt area \:  = \: l \times b \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \tt area \:  = 80cm \times 40cm \\  \\  \\ { : \implies} \tt area \:  = { \boxed{ \pmb{ \frak{3200 {m}^{2} }} } \star} \:  \:  \:  \:  \:

  • Henceforth the area of the rectangle is 3200m²

Similar questions