Math, asked by Sittul, 11 months ago

A square and an equilateral triangle have equal perimeter.if the diagonal of the square is 12 root 5 find the area of the triangle

Answers

Answered by rampariarushi
2

Answer:

area of triangle is 134

Answered by Anonymous
5

\huge{\underline{\underline{\blue{\mathfrak{Answer :}}}}}

\Large{\underline{\bf{Given :}}}

Diaginal of the square is 12√5 units.

Perimeter of square and equilateral triangle are equal.

\rule{200}{2}

\Large{\underline{\bf{To \: Find:}}}

We have to find the area of the equilateral triangle.

\rule{200}{2}

\Large{\underline{\bf{Solution :}}}

We know the formula to find the Diagonal of square.

\large{\star{\underline{\boxed{\sf{Diagonal = \sqrt{2} \times a}}}}}

12√5 = √2 * a

(12√5)/√2 = a

Side = 19 unit (approx)

\rule{200}{2}

Now, we will find Perimeter of square.

\large{\star{\underline{\boxed{\sf{Perimeter = 4 \times side}}}}}

Perimeter = 4 * 19

Perimeter = 76 units.

\large{\star{\underline{\boxed{\sf{Perimeter = 76 \: units}}}}}

\rule{200}{2}

Now,

We will find perimeter of the equilateral Triangle.

\large{\star{\underline{\boxed{\sf{Perimeter = 3 \times a}}}}}

Where, a is the side of equilateral triangle.

76 = 3 * a

76/3 = a

a = 25.34 unit

Hence, side of the equilateral triangle is 25.34

\large{\star{\underline{\boxed{\sf{Side = 25.34 \: units}}}}}

\rule{200}{2}

Now, we will find area of the equilateral triangle.

\large{\star{\underline{\boxed{\sf{Area = \frac{\sqrt{3}}{4} \times a^2}}}}}

 \sf{area =  \frac{ \sqrt{3} }{4}  \times  {(25.34)}^{2} } \\  \\  \sf{area =  \frac{ \sqrt{3} }{4} \times 642.1156 } \\  \\  \sf{area =  \sqrt{3} \times 160.5289 } \\  \\  \sf{area = 280.04 \: unis }

\large{\star{\underline{\boxed{\sf{Area = 280.04 \: units }}}}}

Similar questions