Math, asked by studysamsnairf, 1 year ago

A square and an equilateral triangle have equal perimeter. if the diagonal of the square is 12root2 cm then area of triangle is

Answers

Answered by sanjeevk28012
34

Given :

A square and an equilateral triangle have equal perimeter

The diagonal of the square is 12\sqrt{2} cm

To Find :

The area of triangle

Solution :

According to question

Let The side of square = S  cm

Let The side of equilateral triangle = s  cm

square and an equilateral triangle have equal perimeter

The perimeter of square =  4 × side

                                            = 4 × S

And

The perimeter of equilateral triangle = 3 × side

                                                             = 3 × s

∵ The diagonal of the square = 12\sqrt{2} cm               ....1

∵ The diagonal of the square = side × √2             .....2

From eq1 and eq2

12\sqrt{2} cm = side × √2

So, Side of square = S=  \sqrt{2} cm

Since, A square and an equilateral triangle have equal perimeter

So,  4 × S = 3 × s

Or,   4 ×  \sqrt{2} = 3 × s

Or,   s = \dfrac{4\sqrt{2}}{3}

i.e The side of equilateral triangle = s = \dfrac{4\sqrt{2}}{3} cm

Since The Area of equilateral triangle = A = \dfrac{\sqrt{3}}{4} × (side)²

                                                                     = \dfrac{\sqrt{3}}{4} × (\dfrac{4\sqrt{2}}{3}

                                                                     = \dfrac{8\sqrt{3}}{9} cm²

Hence, The Area of equilateral triangle is \dfrac{8\sqrt{3}}{9} cm²  . Answer

Answered by shylendhar42
72

This is ur answer**********************************************************************************************

Attachments:
Similar questions