A square + b square + 2 a b cos theta
Answers
Answered by
5
Answer:
a correction in question...,
R square = a square+ b square + 2ab cos theta .
Explanation:
Given,
R² = a² + b² + 2ab cosθ
And |a| = |b|
so, R² = a² + b² + 2ab cosθ
⇒R² = |a|² + |b|² + 2|a||b| cosθ
⇒R² = |a|² + |a|² + 2|a|² cosθ [ ∵ |a| = |b| ]
⇒R² = 2|a|²(1 + cosθ)
⇒R² = 2|a|² × 2cos²θ/2 [ ∵(1 + cosx) = 2sin²x/2 ]
⇒R² = 4|a|²cos²θ/2
Taking square root both sides,
⇒R = 2|a|cosθ/2
Hence, magnitude of R equal to 2|a|cosθ/2.
Hope it helps you...
Similar questions