a square + b square A + B A minus b bracket
Answers
Answered by
4
I hope your question is :
( a² + b² ) ( a + b ) ( a - b )
Answer :
By using identity ( x + y ) ( x - y ) = x² - y²
= ( a² + b² ) ( a² - b² )
= (a²)² - (b²)²
= a⁴ - b⁴
( a² + b² ) ( a + b ) ( a - b )
Answer :
By using identity ( x + y ) ( x - y ) = x² - y²
= ( a² + b² ) ( a² - b² )
= (a²)² - (b²)²
= a⁴ - b⁴
veersingh17:
thanks
Answered by
3
(a^2 +b^2)(a+b)(a-b)
we know that
a^2 - b^2 = (a+b)(a-b)
so (a^2 +b^2)(a+b)(a-b)
= (a^2+b^2)(a^2 - b^2)
=( a^2×a^2 -b^2×a^2 +b^2×a^2 -b^2×b^2
we know that a^m × a^n = a^(m+n)
so
a^4-a^2b^2+a^2b^2-b4
a^4-b^4
we know that
a^2 - b^2 = (a+b)(a-b)
so (a^2 +b^2)(a+b)(a-b)
= (a^2+b^2)(a^2 - b^2)
=( a^2×a^2 -b^2×a^2 +b^2×a^2 -b^2×b^2
we know that a^m × a^n = a^(m+n)
so
a^4-a^2b^2+a^2b^2-b4
a^4-b^4
Similar questions