Math, asked by kaurmanjit7911, 11 months ago

A square has a area of 144 a rectangle has the same perimeter as square if the breadth of the rectangle is 5 then find out the length of the rectangle ?​

Answers

Answered by lambatehanmant72
2

Answer:

First find side of square

Let:length of side=x

Area of square =(side) ² ..........(formula)

144 =x²

12 =x .........(taking square root

on both sides)

therefore, x=12 unit

breath of rectangle =b=5unit

suppose :length of rectangle =ĺ

perimeter of squares= perimeter of rectangle

4(side) = 2(b+ĺ)

4× 12 =2(5+ĺ)

48 =10+2ĺ

2ĺ =38

ĺ =19 unit

Length of rectangle is 19 unit

Answered by TRISHNADEVI
3

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

  \mathfrak{ \: Suppose, \: } \\   \:  \:  \:  \:  \:  \:  \:  \mathtt{The  \:  \: side \:  \:  of  \:  \: the  \:  \: square \:  \:  is = a} \\  \\  \underline{ \mathfrak{ \:  \: Given, \:  \: }}  \:  \: \\  \\  \:  \:  \:  \:  \:  \:  \:  \boxed{ \bold{ \:  \: </p><p>Area  = 144 \:  \: }}

 \underline{ \mathfrak{ \:  \: We  \:  \: know \:  \:  that, \: \:  }} \\  \\  \boxed{ \bold{Area  \:  \: of  \:  \: a  \:  \: square = (Side) {}^{2} }} \\  \\  \underline{ \bold{A.T.Q.,}} \\  \\   \:  \:  \:  \:  \:  \:  \mathtt{(Side) {}^{2}  = 144 } \\  \\  \mathtt{\Longrightarrow a {}^{2}  = 144} \\  \\   \mathtt{\Longrightarrow a = 12} \\  \\  \mathtt{ \therefore \:  \:Side \:  \: of \:  \: the \: square = 12 }

 \mathtt{ \therefore \:  \:Perimeter \:  of  \:  \: the \:  \:  square = 4 \times side } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \mathtt{ = 4 \times 12}\\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \mathtt{ = 48}

 \mathfrak{Now,} \\  \:  \:  \:  \:  \:  \:  \:  \underline{ \mathfrak{In  \:  \: case \:  \:   of  \:  \:  the  \:  \:  rectangle,}} \\  \\  \underline{ \mathfrak{ \: Given, \: }} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \mathtt{Breadth, b = 5} \\  \\  \underline{ \mathfrak{Suppose,}} \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \mathtt{Length = l} \\  \\  \mathtt{ \therefore \:  \: </p><p>Perimeter \:  \:  of  \:  \: the  \:  \:  rectangle = 2 (l + b) } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \mathtt{ = 2(l + 5)} \\  \\  \mathtt{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: = 2 \times l + 10} \\  \\  \bold{As \:  \:  perimeter \:  \:  of \:  \:  the \:  \:  rectangle \:  \:  is  \:  \: equal \:  \: } \\  \bold{ to \:  \:  the  \:  \: perimeter \:  \:  of  \:  \: the  \:  \: square.} \\  \\ \:  \:   \:  \:  \:  \:  \:  \:  \: \mathtt{ 2 \times l  +  10 = 48} \\  \\  \mathtt{\Longrightarrow  2 \times l = 48 - 10} \\  \\ \mathtt{\Longrightarrow  2 \times l = 38} \\  \\ \mathtt{\Longrightarrow   l =  \frac{38}{2} } \\  \\  \mathtt{ \therefore \:  \: l = 19} \\  \\  \bold{ \therefore \:  \: Length  \:  \: of  \:  \: the  \:  \: rectangle = 19}

Similar questions