Math, asked by TheRealSardar1774, 1 year ago

A square is inscribed in a circle whose radius is 4cm.The area of portion between the circle and the square is

Answers

Answered by parashuramnalla
1

Answer:

Step-by-step explanation:

If square is inscribed in a circle

then,

Diameter of Circle = Diagonal of the square

                               = a√2  (if 'a' is the side of the square)

i.e. Diameter of Circle = 2 x 4

Diagonal of the square = a√2

  a√2  = 2 x 4

  a√2 = √2 x √2 x 4

   a  = 4√2

So, Side of a square = 4√2 cm

Area of the square = side^2

                                 =a^2

                                  =(4√2)^2

                                   =16 x 2

                                    =32

Area of the Circle = π r^2

                              = ( 22 / 7 ) x 4 x 4

                              =352 / 7 sq.cm

The area of portion between the circle and the square

= Area of the Circle - Area of the square

=( 352 / 7 ) - 32

={ 352 - (32 x 7 ) } / 7

= ( 352 - 224 ) / 7

=128 / 7

=18.28sq.cm

Similar questions