A square JUMP with diagonal 4.2 cm
Answers
Answered by
1
Answer:
Step 1 : draw a rough sketch of square JUMP and mark th given measurements.
The diagonals of a rhombus bisect each other perpendicularly.
JM and UP are diagonals of the square JUMP which bisect each other at ‘B ie. ∠ JBU = 90° and UB = BP =
=
= 2.1cm.
Step 2 : draw JM = 4.2cm (one diagonal of the square JUMP) and draw a perpendicular bisector XY of it and mark the point of intersection as ‘B’.
Step 3 : as the other diagonal UP is perpendicular to JM , UP is a part of XY. So, with center ‘B’ and radius 2.1 cm (OU = BP = 2.1cm) draw 2 arcs on either sides of JM to cut XY at U and P.
Step 4 : join J,U ;U,M ; M,P ; J,P to complete the required square JUMP.
Similar questions