Math, asked by balganeshdgp98jyon, 3 months ago


A square lawn is surrounded
by a 2.5 m
wide path. If area
of path is 165m^2 then find the area of lawn​

Answers

Answered by Clαrissα
6

Procedure ::

• Here, in the above question, we are provided with width of the square lawn = 2.5m and the area of the path = 165 . Firstly we'll assume the side of the lawn as x m and will calculate the area of the lawn by the formulae [area of square = side × side]. After applying this formulae, we will calculate the final result.

Let's do it !!

____________________________________

Given :

  • Width of the square lawn is 2.5 m
  • Area of the path is 165 m²

To Find :

  • Area of the lawn.

Solution ::

☯ Let each side of the square lawn be x m.

Area of path = 165 [Given]

★ (Area of big square) - (Area of small square) = 165 m²

As we know that,

\star \boxed {\sf{ {Area}_{(square)} = side \: \times \: side }} \\ \\ \\ \bigstar \underline{\boldsymbol{According \: to \: the \: question:}} \\ \\ \\ \bf{\longrightarrow \: (x + 5)^2 \:  - (x)^2} = 165 \: m^2 \\ \\ \\ \bf{\longrightarrow \: (x + 5) \: (x + 5) - x^2 = 165 } \\ \\ \\ \bf{\longrightarrow \: x^2  + 5 \: x \:  + 25 \:  - x^2 = 165} \\ \\ \\ \bf{\longrightarrow \: 10 \: x + 25 = 165} \\  \\  \\ \bf{\longrightarrow \: 10 \: x = 165 - 25} \\  \\  \\ \bf{\longrightarrow \: x =   \cancel\dfrac{140}{10}} \\  \\  \\  \longrightarrow \underline{\boxed{\bf{x \:  =  \: 14 \: m}}} \: \pink{\bigstar}

Now calculating,

 \bf{\longrightarrow \: Area \:  of  \:   the \: lawn \:  = (14  \: m)^2  } \\  \\  \\ \bf{\longrightarrow \: 14 \: m \times 14  \: m}\\  \\  \\  \longrightarrow \underline{\boxed{\bf{196 \: m^2}}} \: \purple{\bigstar}

∴ Hence, area of the lawn is 196 cm².

____________________________

 \dag More Formulae :

» \boxed {\sf{ {Area}_{(square)} = side \: \times \: side }}

» \boxed {\sf{ {Perimeter}_{(square)} = 4 \: \times \: side }}

» \boxed {\sf{ {Area}_{(rectangle)} = length \: \times \: breadth }}

» \boxed {\sf{ {Perimeter}_{(rectangle)} = 2 \: \times \: (l + b) }}

Attachments:
Similar questions