Math, asked by vamshivanguri00, 11 months ago

A square ODEF is inscribed in a quadrant OPEQ of a circle and OD= 14√2 cm. Aarthi said that "the area of shaded region is 224cm^2" Do you Agree ? ​

Answers

Answered by Agastya0606
6

Given: OD= 14√2 cm, square ODEF is inscribed in a quadrant OPEQ of a circle

To find: Area of the shaded region which is the remaining part of the quadrant in which the square is inscribed?

Solution:

  • Now as we have given that side of the square id 14√2 cm, so from this we can find the diagonal which will be equal to the radius of the circle.
  • So, diagonal = √(14√2² + 14√2²)

                     = √(784)

                     = 28 cm

  • So now, radius is equal to 28 cm, so area of quadrant is πr²/4

                     = ( 3.14 x 28 x 28 ) / 4

                     = 615.44 cm²

  • Area of square = side²

                     = 14√2²

                     = 392 cm²

  • Now the area of the shaded region is:

                    area of quadrant - Area of square

                    615.44 cm² - 392 cm²

                    293.44 cm²

Answer:

               So the area of the shaded region is 293.44 cm².

Answered by knjroopa
8

Step-by-step explanation:

Given A square ODEF is inscribed in a quadrant OPEQ of a circle and OD= 14√2 cm. Aarthi said that "the area of shaded region is 224cm^2  Do you Agree ?

  • Area of shaded region = Area of quadrant OPEQ – Area of square ODEF
  • Now Area of square = side^2
  •                                   = (14 √2)^2
  •                                   = 392 cm^2
  • Now we need to find the radius and all angles of a square are 90 degree
  • So angle EDO = 90 degree
  • Hence triangle OED is a right angle.
  • Now by using Pythagoras theorem we get
  • OE^2 = DE^2 + OD^2
  •          = (14√2)^2 + (14√2)^2
  •          = 392 + 392
  • OE^2 = 784
  • OE = √784
  • OE = 28
  • So radius = 28
  • Now area of quadrant = ¼ x area of circle
  •                                       = ¼ x π r^2
  •                                        = ¼ x 22/7 x 28 x 28
  •                                       = 616 cm^2
  • Area of shaded region = Area of quadrant OPEQ – area of square ODEF
  •                                        = 616 – 392  
  •                                        = 224 cm^2
  • Therefore area of shaded region = 224 cm^2
Attachments:
Similar questions