A square of side 7 cm enclosed a circle touching all its four sides.then the area enclosed between the square and the circle is
Answers
Given :-
Side of a square = 7cm
Required to find :-
- Area enclosed between the square and the circle
Formulae used :
Solution :
Given that ;
Side of the square = 7 cm
Area of the square = ?
Using the formula ;
we get ,
So,
Similarly,
It is also mentioned that ,
The square has an enclosed circle touching all it's four sides .
So, from the above statement we can conclude that ;
Diameter of the circle = side of the square
So,
Diameter of the circle = 7cm
Radius of the circle = ?
So,
Radius of the circle = 3.5 cm
Now ,
Using the formula :-
=> Here π = 22/7
So,
Hence,
Area enclosed = Area of the square - Area of the circle
So,
Given :
A square of side 7 cm enclosed a circle touching all its four sides.
Side of the square = 7cm.
To be found :
The area enclosed between the square and the circle.
→Follow the attached image
Now,
To find area enclosed between the square and the circle, we have to find- area of circle and area of square.
Then, we have to subtract area of circle from the area of square.
So,
Area of square = (side)×(side) = (side)² unit sq.
Area of square = (7)² = 49 cm²
As from the given statement of question, we can get the diameter of the circle.
The diameter of the circle = side of the square
So, diameter = 7cm
Radius(r) of the circle = (7/2) cm
∴ 2r = diameter or diameter = (r/2)
Now,
Area of circle = πr² unit sq.
Now,
area enclosed between the square and the circle
= Area of square - Area of circle
= 49 - 38.5
= 10.5 cm²
Hence,
The area enclosed between the square and the circle is .