Math, asked by sandhyamalladi121, 9 months ago

A square paper sheet has
10 \frac{2}{5}
cm long side. Find its perimeter and area.​

Answers

Answered by Rohith200422
11

Question:

A  \: square \:  paper  \: sheet  \: has \: 10 \frac{2}{5}cm .

Find \:  its \:  perimeter \:  and \:  area.

To find:

 \bigstar Perimeter \: of \: square \: paper

 \bigstar Area \: of \: square \: paper

Answer:

 \bigstar  Perimeter \: of \: square \: paper \: is \:  \underline{ \:\underline{ \: \bold{ 41.6cm} \: } \: }

 \bigstar Area \: of \: square \: paper \: is \:   \underline{ \:\underline{ \: \bold{108.16 {cm}^{2}} \: }\: }

Given:

 \star Side \: of \: square(a) = 10  \frac{2}{5} cm

Now, change mixed fraction to proper fraction

a =  \frac{52}{5}

 \boxed{a = 10.4cm}

Step-by-step explanation:

 \boxed{ Perimeter \: of \: square  =4a}

 \implies 4 \times 10.4

 \implies \boxed{ Perimeter \: of \: square  =41.6cm}

 \bf{\underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}

 \boxed{ Area \: of \: square =  {(a)}^{2} }

 \implies  {(10.4)}^{2}

 \implies \boxed{Area \: of \: square = 108.16 {cm}^{2} }

 \bf{\underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}

Formula used:

 \bigstar Perimeter \: of \: square  =4a

 \bigstar Area \: of \: square =  {(a)}^{2}

More to know:

  • The diagonals of a square bisect each other at 90 degrees and are perpendicular.
  • Opposite sides of a square are parallel.
  • The internal angles of a square add to 360 degrees.
Attachments:
Similar questions