Math, asked by yash683, 1 year ago

a square sec square theta minus b square tan square theta = c square then prove that sin theta equals to plus minus under root c square minus a square upon c square minus b square

Answers

Answered by Anonymous
39

Hope this helps you!!

Good luck

Attachments:
Answered by mysticd
18

Answer:

sin\theta =±\left(\sqrt{ \frac{c^{2}-a^{2}}{a^{2}-b^{2}}}\right)

Step-by-step explanation:

Given \: a^{2}sec^{2}\theta-b^{2}tan^{2}\theta=c^{2}

\implies a^{2}sec^{2}\theta-b^{2}(sec^{2}\theta-1)=c^{2}

/*By Trigonometric identity:

tan²A=sec²A-1 */

\implies a^{2}sec^{2}\theta-b^{2}-sec^{2}\theta+b^{2}=c^{2}

\implies (a^{2}-b^{2})sec^{2}\theta=c^{2}-b^{2}

\implies sec^{2}\theta =\frac{c^{2}-b^{2}}{a^{2-b^{2}}

\implies cos^{2}\theta = \frac{a^{2}-b^{2}}{c^{2}-b^{2}}

\implies 1- sin^{2}\theta = \frac{a^{2}-b^{2}}{c^{2}-b^{2}}

\implies sin^{2}\theta= 1-\frac{a^{2}-b^{2}}{c^{2}-b^{2}}

\implies sin^{2}\theta= \frac{c^{2}-b^{2}-a^{2}+b^{2}}{c^{2}-b^{2}}\\=\frac{c^{2}-a^{2}}{a^{2}-b^{2}}

Therefore,

sin\theta =±\left(\sqrt{ \frac{c^{2}-a^{2}}{a^{2}-b^{2}}}\right)

•••♪

Similar questions