Math, asked by parabsharma4p78dwn, 1 year ago

a square upon x minus b square upon Y is equal to zero a square B upon x minus b square is equal to a + b

Attachments:

Answers

Answered by shubhamjoshi033
227

Answer:

The value of x and y are as follows:

x = a²(b-a)/(b+a)

y = b²(b-a)/(b+a)

Step-by-step explanation:

Given,

a²/x - b²/y = 0

=> a²/x =  b²/y

=> x = a²y/b²

also given that,

a²b/x - b²a/y = a + b

putting the value of x = a²y/b² in this equation we get,

b³/y - b²a/y = a + b

=> (b³ - b²a)/y = a + b

=> y = (b³ - b²a)/a + b

=> y = b²(b-a)/(b+a)

putting the value of y in the eqn  x = a²y/b²

=> x = a²/b² * b²(b-a)/(b+a)

=> x = a²(b-a)/(b+a)

Answered by hukam0685
156
Solution:

Let
 \frac{1}{x}  = u \\  \\  \frac{1}{y} = v \\  \\
So, equation will become

 {a}^{2} u -  {b}^{2} v = 0 \:  \:  \: eq1 \\  \\  {a}^{2} bu -  {b}^{2} av = a + b \:  \:  \:  \: eq2 \\  \\
multiply eq 1 by b and subtract from 2

 {a}^{2} bu -  {b}^{3} v = 0 \\ {a}^{2} bu -  {b}^{2} av = a + b \\  -  \:  \:  \:  \:  \:  \:  \:  +  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  \:  \:  \:  \:  -  \\  \\  {b}^{2} av -  {b}^{3} v =  - (a + b) \\  \\  {b}^{2} (a - b)v =  - (a + b) \\  \\ v =  \frac{a + b}{(b - a) {b}^{2} }  \\ so \\  \\ y =  \frac{(b - a) {b}^{2} }{a + b}  \\  \\
put the value of y in eq 1 to get value of x

 \frac{ {a}^{2} }{x}  -  \frac{ {b}^{2} } {\frac{(b - a) {b}^{2} }{a + b}}  = 0 \\  \\  \frac{ {a}^{2} }{x}  -  \frac{a + b}{(b - a)}  = 0 \\  \\  \frac{ {a}^{2} }{x}  =  \frac{(a + b)}{(b - a)}  \\  \\ x =  \frac{(b - a) {a}^{2} }{(a + b)}  \\  \\
Hope it helps you.
Similar questions