A state law of parallelogram law of
Vectors perive an expression for the
magnitude and direction of the
resultant vector.
Answers
Answer:
Parallelogram law states that if two vectors are considered to be the adjacent sides of a Parallelogram, then the resultant of two vectors is given by the vector which is a diagonal passing through the point of contact of two vectors.
If ABCD is a parallelogram, then AB = DC and AD = BC. Then according to the definition of the parallelogram law, it is stated as
2(AB)2 + 2 (BC)2 = (AC)2 + (BD)2.
In case the parallelogram is a rectangle, then the law is stated as:
2(AB)2 + 2 (BC)2 = 2(AC)2
Because in rectangle, two diagonals are of equal lengths. i.e., (AC = BD)
Parallelogram Law Proof
Let AD=BC = x, AB = DC = y, and ∠ BAD = α
Using the law of cosines in the triangle BAD, we get
x2 + y2 – 2xy cos(α) = BD2 ——-(1)
We know that in a parallelogram, the adjacent angles are supplementary. So
∠ADC = 180 – α
Now, again use the law of cosines in the triangle ADC
x2 + y2 – 2xy cos(180 – α) = AC2 ——-(2)
Apply trigonometric identity cos(180 – x) = – cos x in (2)
x2 + y2 + 2xy cos(α) = AC2
Now, the sum of the squares of the diagonals (BD2 + AC2) are represented as,
BD2 + AC2 = x2 + y2 – 2xycos(α) + x2 + y2 + 2xy cos(α)
Simplify the above expression, we get;
BD2 + AC2 =2x2 + 2 y2 ——-(3)
The above equation is represented as:
BD2 + AC2 = 2(AB)2 + 2(BC)2