Physics, asked by johny8835, 11 months ago

A stationary bomb explodes into two fragments of masses 3 kg and 1 kg total k.e is 2400 J find k.e energy of smaller part

Answers

Answered by Anonymous
13

\huge\underline\blue{\sf Answer:}

\large\red{\boxed{\sf KE=600J}}

\huge\underline\blue{\sf Solution:}

\large\underline\pink{\sf Given: }

Mass (\sf{m_1})=1kg

Mass (\sf{m_2})=3kg

Total kinetic energy (\sf{K_{total})=2400J}

\large\underline\pink{\sf To\:Find: }

Kinetic Energy of larger part = ?

━━━━━━━━━━━━━━━━━━━━━━━━

According to law of conservation of momentum :

\large{♡}\large{\boxed{\sf m_1u_1+m_2u_2=m_1v_1+m_2v_2}}

\large\implies{\sf v_1+3v_2=0 }

\large\boxed{\sf v_1=-3v_2→(1)}

_______________________________________

Now ,

\large{\boxed{\sf {\frac{1}{2}}mv^2={\frac{1}{2}}mv_1^2+{\frac{1}{2}}mv_2^2 }}

\large\implies{\sf 2400={\frac{1}{2}}(-3v_2)^2+{\frac{1}{2}}×3v_2^2}

\large\implies{\sf 2400={\frac{9}{2}}v_2^2+{\frac{3}{2}}v_2^2}

\large\implies{\sf 2400=6v_2^2 }

\large\implies{\sf v_2^2={\frac{2400}{6}} }

\large\boxed{\sf v_2^2=20m/s }

On putting value of \sf{v_2} in Equation first .

\large\implies{\sf v_1=3v_2 }

\large\implies{\sf v_1=3×20 }

\large\boxed{\sf v_1=60m/s }

_______________________________________

Kinetic Energy of larger part i.e of 3kg is :

\large{♡}\large{\boxed{\sf KE={\frac{1}{2}}m_2v_2^2 }}

\large\implies{\sf KE={\frac{1}{2}}3×20×20 }

\large\implies{\sf KE=600J}

\huge\red{♡}\large\red{\boxed{\sf KE=600J}}

Kinetic Energy of larger part is 600J

Similar questions