Physics, asked by nishil17, 1 year ago

a stationary particle explores into two particles of masses X and Y which move in opposite directions with velocities V1 and V2 the ratio of their kinetic energy E1:E2 is

Answers

Answered by deepzzzps
2

ratio of thr kinetic energy will be 1 becoz energy will be conserved


Answered by mindfulmaisel
1

According to the given data, conservation of momentum is to be applied on the given situation to form the equation and then be compared to rule out the relation.

Thereby, Initial \quad momentum = Final \quad momentum

\Rightarrow Initial \quad momentum = Zero\quad as \quad mass \quad at \quad rest.

\Rightarrow Final \quad momentum = m _2 v _2 - m _1 v _1

\Rightarrow 0 = m _2 v _2 - m _1 v _1

\Rightarrow m _1 v _1 = m _2 v _2

\Rightarrow \frac { v_{ 1 } }{ v_{ 2 } } =\frac { m_{ 2 } }{ m_{ 1 } }

\Rightarrow \frac { E_{ 1 } }{ E_{ 2 } } =\frac { \frac { 1 }{ 2 } m_{ 1 }{ v_{ 1 } }^{ 2 } }{ \frac { 1 }{ 2 } m_{ 2 }{ v_{ 2 } }^{ 2 } }        

\Rightarrow \frac { E_{ 1 } }{ E_{ 2 } } =\frac { \frac { { { P }_{ 1 } }^{ 2 } }{ 2m_{ 1 } } }{ \frac { { { P }_{ 2 } }^{ 2 } }{ 2m_{ 2 } } }

As\quad m_{ 1 }v_{ 1 }=m_{ 2 }v_{ 2 }

\left[ \therefore { P }_{ 1 }={ P }_{ 2 }\quad \right]

\Rightarrow \frac { E_{ 1 } }{ E_{ 2 } } =\frac { \frac { 1 }{ 2m_{ 1 } } }{ \frac { 1 }{ 2m_{ 2 } } }

\Rightarrow \frac { E_{ 1 } }{ E_{ 2 } } =\frac { 1 }{ 2m_{ 1 } } \times \frac { 2m_{ 2 } }{ 1 }

\Rightarrow \frac { E_{ 1 } }{ E_{ 2 } } =\frac { m_{ 2 } }{ m_{ 1 } }

Similar questions