Math, asked by sunveer52, 5 months ago

A statue, 1.6 m tall, stands on the top of a pedestal. From a point on the ground, the angle

of elevation of the top of the statue is 60° and from the same point the angle of elevation of

the top of the pedestal is 45°. Find the height of the pedestal.​

Answers

Answered by shivangi1101
3

Answer:

answer is AB = 0.8 (√3+1)m

Answered by hotcupid16
149

First Refer to the Diagram for the better understanding of question :-

Here Pedestal refers to the base of statue as given in the diagram.

______________________________

Assumption :-

  • Let AB be the full height of the statue.

  • CB be the height Pedestal.

Given :-

  • Height above on the top of pedestal = AC = 1.6 m

  • Angle ADB = 60° (Angle of Elevation)

  • Angle CDB = 45° (Angle of Elevation of Pedestal)

To find :-

  • Height of the Pedestal.

Solution :-

○ As we know that

{ \boxed{\sf{\  \tan( A )=  \frac{ Perpendicular}{ Base}}}}

○ In triangle CBD :-

{\sf{\implies{ \tan(A) = \cfrac{ Perpendicular}{ Base}}}}

{\sf{\implies{ \tan(45 \degree) = \cfrac{CB}{ BD}}}}

Here value of tan(A) is 1 so,

{\sf{\implies{1 = \cfrac{CB}{  BD}}}}

{\sf{\implies{CB = BD}}}

Let CB = BD be the equation 1 then,

{\sf{\implies{ CB = BD}}}...(eq \: 1)

● In triangle ABD

{\sf{\implies{ \tan(A) = \cfrac{ Perpendicular}{ Base}}}}

{\sf{\implies{ \tan(60 \degree) = \cfrac{ AC +  CB}{  BD}}}}

In equation 1 CB is equal to BD then,

{\sf{\implies{ \tan(60 \degree) = \cfrac{ AC +  CB}{  CB}}}}

Here value of tan(60°) is √3. So,

{\sf{\implies{  \sqrt{3}  = \cfrac{ AC +  CB}{CB}}}}

{\sf{\implies{  \sqrt{3}CB = { AC +  CB}}}}

Here value of AC is 1.6 m because it is given.

{\sf{\implies{  \sqrt{3}CB = { 1.6 +  CB}}}}

{\sf{\implies{  \sqrt{3}CB  -CB= { 1.6  }}}}

Taking CB as common.

{\sf{\implies{ CB(\sqrt{3}  -1)= { 1.6  }}}}

{\sf{\implies{ CB= \cfrac  { 1.6 }{(\sqrt{3}  -1)} }}}

Rationalizing the denominator:-

{\sf{\implies{ CB= \cfrac  { 1.6 }{(\sqrt{3}  -1)} \times  \cfrac{( \sqrt{3}  + 1)}{ ( \sqrt{3}  + 1)} }}}

Using formula [(a + b)(a - b) = a² - b²]

{\sf{\implies{ CB= \cfrac  { 1.6   \times ( \sqrt{3}  + 1)}{(\sqrt{3})^{2}   -(1)^{2} } }}}

{\sf{\implies{ CB= \cfrac  { 1.6   \times ( \sqrt{3}  + 1)}{3 - 1} }}}

{\sf{\implies{ CB= \cfrac  { 1.6   \times ( \sqrt{3}  + 1)}{2} }}}

{\sf{\implies{ CB=  0.8  \times ( \sqrt{3}  + 1) }}}

{ \boxed{ \red{\sf{\implies{ CB=  0.8   ( \sqrt{3}  + 1) m }}}}}

So, height of the Pedestal is 0.8(√3 + 1 ) m.

_____________________________

More :- Further solving the value of CB.

{\sf{\rightarrow{CB = 0.8( \sqrt{3}  + 1)}}}

Considering the value of √3 as 1.73 then

{\sf{\rightarrow{CB = 0.8( 1.73+ 1)}}}

{\sf{\rightarrow{CB = 0.8( 2.73)}}}

{ \boxed{\sf{\rightarrow{CB =2.184 \: m }}}}

By further solving we get the height of Pedestal as 2.184 m.

_________________________

More to know :-

\begin{gathered}\footnotesize{\boxed{\begin{array}{c|c} \bf{\underline{ \: \:Ratio \: \: }} & \bf{\underline{ \: \:  Formula \: \: }} \\ \\ \sf{ \sin(A) }&{ \sf{ \cfrac{ Perpendicular}{ Hypotenuse} }}\\ \\ \sf{ \cos(A) } & { \sf{\cfrac{Base }{ Hypotenuse} }} \\ \\ \sf{ \tan(A) } & \sf \cfrac{ Perpendicular }{Base } \\ \\ \sf{ \csc(A) } & \sf\cfrac{ Hypotenuse }{ Perpendicular } \\ \\ \sf{ \sec(A) } & \sf\cfrac{ Hypotenuse}{Base} \\ \\ \sf{ \cot(A) } & \sf \cfrac{Base}{Perpendicular} \: \\ \\ \end{array}}}\end{gathered}

Attachments:
Similar questions