A steel bar 35 mm x 35 mm in section and 100 mm in length is acted upon by a loud of 180 KN along its longitudinal axis and 400 KN and 300 KN along the axes of the lateral surface Determine
i) Change in the dimension of the bar
ii) Change in volume Take E = 205 Gpa and poissons ratio 0.3
Answers
The stresses in the direction of X, Y and Z
axes,
Vo)1 0.20 4G LTÉŽ KB/s 71
Along X-axes, Px=FxA=320*10360*60(N/ mm*mm)=88.89N/mm2
Along Y axis, Py=FyA=760*103180*60(N/ mm*mm)=70.37N/mm2
Along Z axis, Pz=FzA=600*103180*60(N/ mm*mm)=55.56N/mm2
Now, the strain along the three principal directions are, due to stresses, Px,Py,Pz,
ex=PxE-UPYE-uPzE
ex-88.89200*103-0.3*70.37200*103-
0.3*55.56200*103=0.000256
Now,
ey=PyE-uPzE-uPxE
ey=70.37200*103-0.3*55.56200*103- 0.3*88.89200*103=0.000135
ez=PzE-uPxE-uPyE
ez=55.56200*103-0.3*88.89200*103-0.3
*70.37200*103=0.00039
Volumetric sign=ex+eytez =0.000256+0.000135+0.00039
ev=0.000781
Also, volumetricstrain=changeinvolumeori ginalvolume
0.000781=changeinvolume18O*60*60
Also, volumetricstrain=changeinvolumeori ginalvolume
0.000781=changeinvolume180*60*60
Changeinvolume=506.088mm3
Now,ex=DeltaLL
0.000256-A180
AL=0.046mm
ey=DeltaWw
0.000135=AW60
AW=0.0081mm
ez=Deltatt
0.00039-At60
At=0.0234mm
Answer: