Physics, asked by nishankpaudel1, 5 months ago

A steel rod and brass rod when measured at 0०c are 50.1cm and 50.0cm respectively. At what temperature will their lengths be equal?(alpha of brass= 18*10^-6 and of steel= 12*10^-6)


plz help me only if you know it

Answers

Answered by aryan073
5

Given :

• A steel rod and brass rod when measured at 0 degree

• The length of steel rod =50.1cm

• The length of brass rod =50.0cm

  \bullet \rm \alpha(brass) = 18 \times  {10}^{ - 6 }  \:  \: and \:  \:  \alpha(steel) = 12 \times  {10}^{ - 6}

To find :

• At what temperature will their length be equal =?

Formula :

\red\bigstar\boxed{\sf{\delta L=L_{1}(1+\alpha \:\delta t)}}

Solution :

• As we know that

\rm{L_{1}-L_{2}= \alpha \: L_{1} \: t}

\rm{\bullet \: L_{1}= initial \: length}

\rm{\bullet \: L_{2} =Final \: length}

\rm{\bullet \: t= temperature \: difference }

• As initial temperature is 0

Now final length for steel and brass rod will be same.

Generally written as,

\\ \implies\sf{ L_{2}=L_{1} (1+\alpha \: \delta t) }

\\ \implies\sf{L_{1} \: for \: steel=L_{2} \: for \: brass}

 \\ \implies \sf \: 50.1(1 +  1.8 \times  {10}^{ - 6} t) = 50.0(1 + 1.2 \times  {10}^{ - 6}t )

 \\  \implies \sf \: 50.1  + 50.1 \times 1.8 \times  {10}^{ - 6} t = 50.0 + 50.0 \times 1.2 \times  {10}^{ - 6} t

 \\  \\  \implies \sf \: 50.1 + 90.18 \times  {10}^{ - 6}  t= 50.0 + 60 \times  {10}^{ - 6} t \\  \\  \implies \sf \: 50.1 - 50.0 + 90.18 \times  {10}^{ - 6} t - 60.0 \times  {10}^{ - 6} t \\  \\  \implies \sf \: 0.1 + (90.18 \times  {10}^{ - 6}  - 60.00 \times  {10}^{ - 6} )t = 0 \\  \\  \implies \sf \: 0.1 + 30.18 \times {10}^{ - 6} t = 0 \\  \\  \implies \sf \: 30.18 \times  {10}^{ - 6} t = -    0.1 \\  \\  \implies \sf \: t =   - \frac{0.1 \times  {10}^{ - 6} }{30.18}  \\  \\   \implies \sf \: t =  \frac{ - 1 \times  {10}^{ - 6} }{301.8}  \\  \\  \implies \sf \: t = -  0.00  33 \times  {10}^{ - 6}  \\  \\  \implies \sf \: \: t =  33 \times  {10}^{ - 10}

Answer will be approximately -33 Celsius

Similar questions