Physics, asked by deepanshuj215, 11 months ago

A Steel wire 6 m is stretched through 3 mm. The cross sectional area of wire is
2mm². Ifyoung's modulus of steel is 2x10'' N / m². Find elastic energy density
of wire.​

Answers

Answered by Anonymous
182

\huge\underline{\underline{\bf \orange{Question-}}}

A Steel wire 6 m is stretched through 3 mm. The cross sectional area of wire is

2mm². Ifyoung's modulus of steel is 2x10¹¹ N/m². Find energy Density and elastic potential Energy

\huge\underline{\underline{\bf \orange{Solution-}}}

\large\underline{\underline{\sf Given:}}

  • Lenght ( L ) = 6m
  • ∆l = {\sf 3mm\:\:or\:\:3×10^{-3}m}
  • Area (A) = {\sf 2mm^2\:\:or\:\:2×10^{-6}m}
  • Young's modulus ( Y ) = 2×10¹¹N/m²

\large\underline{\underline{\sf To\:Find:}}

  • Energy Density
  • Elastic Potential Energy

Energy Density

{\boxed{\bf \blue{Energy\: Density=\dfrac{1}{2}×stress×strain} }}

\implies{\sf \dfrac{1}{2}×Y×(strain)^2}

\implies{\sf \dfrac{1}{2}×2×10^{11}\left(\dfrac{3×10^{-3}}{6}\right)^2}

\implies{\sf \dfrac{1}{2}×2×10^{11}×\dfrac{9×10^{-6}}{36} }

\implies{\bf \red{Energy\: Density=10^5\:J/m^3} }

Elastic Potential Energy

{\boxed{\bf \blue{Elastic\:PE=Energy\:Density×Volume}}}

\implies{\sf 10^5×2×10^{-6}×6 }

\implies{\sf 12×10^{-1} }

\implies{\bf \red{ 1.2\:J }}

\huge\underline{\underline{\bf \orange{Answer-}}}

Energy Density {\bf \red{10^5\:J/m^3}}

Elastic Potential Energy {\bf \red{1.2\:J}}

Similar questions