Math, asked by utkarshcricketer15, 10 months ago

A steel wire which bent in the form of square enclosed an area of 121 cm2 if the same wire is bent in circle​

Answers

Answered by Abdulhussain56
2

Answer:154cm2

Step-by-step explanation:

Area of square= a^2

a=√121

a=11cm

Now, perimeter of square=4a

=4×11

=44 .

Now, perimeter of square=perimeter of circle .

So, 44=2Πr

Πr=22

r =22×7/22

r=7

Hence area of circle=Πr^2

=22/7×7^2

=22×7 = 154cm2

Answered by Anonymous
1

 \large \boxed{ \textsf{given:-}}

 \texttt {\: enclosed area of steel wire when bent to form square = 121 \: sq.cm }

 \large \boxed{ \textsf{to find out:-}}

 \textsf{the area of circle}=??

  \large \boxed{ \rm \: solution:-}

 \rm \: Side  \: a \: square \:  =  \sqrt{121}cm  = 11cm

 \rm \: perimeter \: of \: square = (4   \times 11)cm = 44cm

 \rm \therefore \: length \: of \: the \: wire \:  = 44cm

 \rm \therefore \: circumference \: of \: the \: circle \:  = length \: of \: wire = 44cm

 \textsf{let the radius of the circle be }r \rm \: cm

 \rm \: then \: 2 \pi \: r = 44 \implies \: 2 \times  \large \frac{22}{7}  \small r = 44 \implies \: r = 7

 \rm \therefore \: area \: of \: the \: circle =  \pi \: r {}^{2}

 \large \rm \:  =  \huge( \small \frac{22}{7}  \times 7 \times 7 \huge) \small \:cm {}^{2}  = 154 \: cm {}^{2}

Similar questions