Physics, asked by Harsh120675, 11 months ago

a stone is dropped from a hundred metre cliff. What is the velocity of the stone after 3 seconds ? When does the stone hit the ground? With what velocity does the stone hit the ground?​

Answers

Answered by nirman95
16

Answer:

Given:

Height = 100 metres

Initial Velocity = 0 m/s

To find:

  • Velocity of stone after 3 seconds
  • Velocity with which stone hits the ground
  • Time after which the stone hits ground

Calculation:

Velocity after 3 seconds:

 \therefore \: v = u + gt \\  =  > v = 0 \:  + 10 \times 3  \\  =  > v = 30 \: metres \:{s}^{-1}

Velocity on reaching ground:

  \therefore \: {v}^{2}  =  {u}^{2} + 2gh \\  =  >   {v}^{2}  =  {0}^{2}  + 2 \times 10 \times  100 \\  =  >  {v}^{2}  = 2000 \\  =  > v =  \sqrt{2000 }  \\   =  > v = 44.72 \: m {s}^{ - 1}

Time after which body reaches ground :

 \therefore \: h = ut +  \frac{1}{2} a {t}^{2}  \\  =  > 100 = 0 +  \frac{1}{2}  \times 10 \times  {t}^{2}  \\  =  >  {t}^{2}  = 20 \\  =  > t =  \sqrt{20}    \\ =  > t = 4.47 \: sec.


Anonymous: Nice
Answered by Anonymous
6

\Huge{\underline{\underline{\red{\mathfrak{Answer :}}}}}

Given :

  • Height = 100 m
  • Intial Velocity (u) = 0 m/s

Solution :

We have formula

\large \bigstar {\boxed{\sf{v \: = \: u \: + \: at}}} \\ \\ \\ \implies {\sf{v \: = \: 0 \: + \: 10 \: \times \: 3}} \\ \\ \\ \implies {\sf{v \: = \: 30}} \\ \\ \\ \large {\boxed{\sf{Final \: Velocity \: at \: 3s \: is\: 30 \: ms^{-1}}}}

_________________________________

Use formula :

\large \bigstar {\boxed{\sf{v^2 \: = \: u^2 \: + \: 2gh}}} \\ \\ \\ \implies {\sf{v^2 \: = \: (0)^2 \: + \: 2(10)(100) \\ \\ \\ \implies {\sf{v^2 \: = \: 2000}} \\ \\ \\ \implies {\sf{v \: = \: \sqrt{2000}}} \\ \\ \\ \implies {\sf{v \: = \: 44.7}}

Final Velocity = 44.7 m/s

_________________________________

Use formula :

\large \bigstar {\boxed{\sf{s \: = \: ut \: + \: \dfrac{1}{2}gt^2}}} \\ \\ \\ \implies {\sf{100 \: = \: \dfrac{1}{2}(10)(t)^2}} \\ \\ \\ \implies {\sf{t^2 \: = \: \dfrac{100 \: \times \: 2}{10}}} \\ \\ \\ \implies {\sf{t^2 \: = \: \dfrac{200}{10}}} \\ \\ \\ \implies {\sf{t^2 \: = \: 20}} \\ \\ \\ \implies {\sf{t \: = \: \sqrt{20}}} \\ \\ \\ \implies {\sf{t \: = \: 4.47}}

Time is 4.47 s


Anonymous: Good
Similar questions