Physics, asked by vipulgtrader, 1 year ago

A stone is thrown vertically upward with a speed of 40m/s. The time interval for which particle was above 40 m from the ground is (g=10m/s*2)

(A) 4√2s
(B) 8s
(C) 4s
(D) 2√2s

Answers

Answered by BrainlyConqueror0901
101

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore Time\:taken=4-2\sqrt{2}\:sec}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about a stone is thrown vertically upward with a speed of 40m/s.

• We have to find the time interval for which particle was above 40 m from the ground.

 \underline  \bold{Given : } \\  \implies Initial \: velocity(u) = 40 \: m/s \\  \\  \implies Distance(s) = 40 \: m \\  \\  \implies Acceleration(a) =  - 10 \: m /{s}^{2}  \\  \\  \underline \bold{To \: Find : } \\  \implies Time \: taken(t) = ?

 \bold{By \: Third \: equation \: of \: motion : } \\ \implies s = ut +  \frac{1}{2}  {at}^{2}  \\  \\  \bold{ putting \: given \: values : } \\  \implies 40 = 40 \times t +  \frac{1}{ \cancel2}  \times (  \cancel{- 10}) \times  {t}^{2}  \\  \\  \implies 40 = 40t  - 5 {t}^{2}  \\  \\  \implies  {5t}^{2}  - 40t + 40 = 0 \\  \\  \implies  {t}^{2}  - 8t + 8 = 0 \\  \\  \bold{by \: quadratic \: formula : } \\ \implies t =  \frac{ - b  \pm  \sqrt{ {b}^{2} - 4ac } }{2a}  \\  \\  \implies t =  \frac{ - ( - 8) \pm  \sqrt{ {( - 8})^{2}  - 4 \times 1 \times 8} }{2 \times 1}  \\  \\  \implies t =  \frac{8 \pm \sqrt{64 - 32} }{2}  \\  \\  \implies t =  \frac{8 \pm 4 \sqrt{2} }{2}  \\  \\   \bold{\implies t =4 \pm 2 \sqrt{2} \:   sec} \\  \\   \bold{ We \: take \: minimum \: time } \\   \bold{\therefore Time \: taken \: to \: reach \: 40 \: m \: is \: 4 - 2 \sqrt{2}  \: sec}

Answered by Anonymous
144

Solution:

Given:

=> Initial velocity (u) = 40 m/s

=> Distance (s) = 40 m

=> Acceleration (a) = - 10 m/s²

To Find:

=> Time (t)

Formula used:

\sf{\implies s = ut+\dfrac{1}{2}at^{2}}

So, By using 3rd equation of motion,

\sf{\implies s = ut+\dfrac{1}{2}at^{2}}

\sf{\implies 40 = 40 \times t + \dfrac{1}{2}\times (-10) \times t^{2}}

\sf{\implies 40=40t- 5t^{2}}

\sf{\implies 5t^{2}-40t+40=0}

Take 5 common from above equation, we get

\sf{\implies t^{2}-8t+8=0}

By using Quadratic equation, because here splitting middle term not works.

\sf{\implies x=\dfrac{-b\pm \sqrt{b^{2}-4ac}}{2a}}

Here x is replace by t.

\sf{\implies t=\dfrac{-b\pm \sqrt{b^{2}-4ac}}{2a}}

Where,

=> a = 1

=> b = -8

=> c = 8

So, put the values in the above formula,

\sf{\implies t = \dfrac{-(-8)\pm \sqrt{(-8)^{2}-4\times 1\times 8}}{2}}

\sf{\implies t=\dfrac{8\pm \sqrt{64-32}}{2}}

\sf{\implies t=\dfrac{8\pm \sqrt{32}}{2}}

\sf{\implies t=\dfrac{8\pm 4\sqrt{2}}{2}}

\large{\boxed{\boxed{\red{\sf{\implies t=4\pm 2\sqrt{2}\;sec}}}}}

Hence, Time taken = 4 ± 2√2 sec

Similar questions