a stone thrown upward from the top of tower 85 m high, reaches ground in 5 sec.
find
the greatest hight above ground
velocity with which it reaches the ground
time taken to reach maximum hight.
take g=10m/s-2
Answers
1)Height covered in upward motion is given by -
The greatest height above the ground
2)For the displacement motion-
3)Let t be time taken to reach the maximum height
For upward motion
displacement
⟶ s = - 85ms=−85m
⟶ t = 5st=5s
⟶ g = - 10m {s}^{ - 2}
g=−10ms
−2
⟶ s = ut + \frac{1}{2} g {t}^{2}s=ut+
2
1
gt
2
\longrightarrow⟶ - 85 = u \times 5 - \frac{1}{2} \times 10 \times 25−85=u×5−
2
1
×10×25
\longrightarrow⟶ u = 8m {s}^{ - 1}u=8ms
−1
1)Height covered in upward motion is given by -
\longrightarrow⟶ {v}^{2} = {u}^{2} + 2gsv
2
=u
2
+2gs
\longrightarrow⟶ 0 = {8}^{2} - 2( - 10)s0=8
2
−2(−10)s
\longrightarrow⟶ s = 3.2ms=3.2m
The greatest height above the ground
\longrightarrow⟶ 85 + 3.2 m85+3.2m
\longrightarrow⟶ 88.2m88.2m
2)For the displacement motion-
\longrightarrow⟶ u = 0u=0
\longrightarrow⟶ g = 10m {s}^{ - 2}g=10ms
−2
\longrightarrow⟶ s = 88.2ms=88.2m
\longrightarrow⟶ {v}^{2} = {u}^{2} + 2gsv
2
=u
2
+2gs
\longrightarrow⟶ 0 + 2 \times 10 \times 88.20+2×10×88.2
\longrightarrow⟶ 17641764
3)Let t be time taken to reach the maximum height
For upward motion
\longrightarrow⟶ u = 8m {s}^{ - 1}u=8ms
−1
\longrightarrow⟶ v = 0v=0
\longrightarrow⟶ g = - 10m {s}^{ - 1}g=−10ms
−1
\longrightarrow⟶ t = \frac{v - u}{g}t=
g
v−u
\longrightarrow⟶ t = \frac{ - 8}{ - 10}t=
−10
−8
\longrightarrow⟶ t = 0.8st=0.8s