Physics, asked by vanshika8521, 1 year ago

a stone thrown upward from the top of tower 85 m high, reaches ground in 5 sec.
find
the greatest hight above ground
velocity with which it reaches the ground
time taken to reach maximum hight.
take g=10m/s-2​

Answers

Answered by Anonymous
37

\huge\mathfrak{\underline{Solution}}

\sf{Net\:displacement}

\longrightarrows =  - 85m

\longrightarrowt = 5s

\longrightarrowg =  - 10m {s}^{ - 2}

\longrightarrows = ut +  \frac{1}{2} g {t}^{2}

\longrightarrow - 85 = u \times 5 -  \frac{1}{2}  \times 10 \times 25

\longrightarrowu = 8m {s}^{ - 1}

1)Height covered in upward motion is given by -

\longrightarrow {v}^{2}  =  {u}^{2}  + 2gs

\longrightarrow0 =  {8}^{2}  - 2( - 10)s

\longrightarrows = 3.2m

The greatest height above the ground

\longrightarrow85 + 3.2 m

\longrightarrow88.2m

2)For the displacement motion-

\longrightarrowu = 0

\longrightarrowg = 10m {s}^{ - 2}

\longrightarrows = 88.2m

\longrightarrow {v}^{2}  =  {u}^{2}  + 2gs

\longrightarrow0 + 2 \times 10 \times 88.2

\longrightarrow1764

3)Let t be time taken to reach the maximum height

For upward motion

\longrightarrowu = 8m {s}^{ - 1}

\longrightarrowv = 0

\longrightarrowg =  - 10m {s}^{ - 1}

\longrightarrowt =  \frac{v - u}{g}

\longrightarrowt =  \frac{ - 8}{ - 10}

\longrightarrowt = 0.8s


vanshika8521: superb
Answered by Anonymous
3

displacement

⟶ s = - 85ms=−85m

⟶ t = 5st=5s

⟶ g = - 10m {s}^{ - 2}

g=−10ms

−2

⟶ s = ut + \frac{1}{2} g {t}^{2}s=ut+

2

1

gt

2

\longrightarrow⟶ - 85 = u \times 5 - \frac{1}{2} \times 10 \times 25−85=u×5−

2

1

×10×25

\longrightarrow⟶ u = 8m {s}^{ - 1}u=8ms

−1

1)Height covered in upward motion is given by -

\longrightarrow⟶ {v}^{2} = {u}^{2} + 2gsv

2

=u

2

+2gs

\longrightarrow⟶ 0 = {8}^{2} - 2( - 10)s0=8

2

−2(−10)s

\longrightarrow⟶ s = 3.2ms=3.2m

The greatest height above the ground

\longrightarrow⟶ 85 + 3.2 m85+3.2m

\longrightarrow⟶ 88.2m88.2m

2)For the displacement motion-

\longrightarrow⟶ u = 0u=0

\longrightarrow⟶ g = 10m {s}^{ - 2}g=10ms

−2

\longrightarrow⟶ s = 88.2ms=88.2m

\longrightarrow⟶ {v}^{2} = {u}^{2} + 2gsv

2

=u

2

+2gs

\longrightarrow⟶ 0 + 2 \times 10 \times 88.20+2×10×88.2

\longrightarrow⟶ 17641764

3)Let t be time taken to reach the maximum height

For upward motion

\longrightarrow⟶ u = 8m {s}^{ - 1}u=8ms

−1

\longrightarrow⟶ v = 0v=0

\longrightarrow⟶ g = - 10m {s}^{ - 1}g=−10ms

−1

\longrightarrow⟶ t = \frac{v - u}{g}t=

g

v−u

\longrightarrow⟶ t = \frac{ - 8}{ - 10}t=

−10

−8

\longrightarrow⟶ t = 0.8st=0.8s

Similar questions