Math, asked by shumailakhan096, 3 months ago

A storage room is 6 m long .5 m wide and 3.5 m high. How many tanks of capacity 120 litres each, can it hold?

Answers

Answered by 9708254521nitu
2

Answer:

\huge\mathbb{\underline{SOLUTION:-}}

SOLUTION:−

\begin{gathered}\bold{Given:-}\begin{cases}\sf{Dimension\:of\:room}\\ \sf{l=6m\: ,=5m\:, h=3.5m}\end{cases}\end{gathered}

Given:−{

Dimensionofroom

l=6m,=5m,h=3.5m

How many tanks of capacity 120 litres can it hold .

\boxed{\sf{Volume \:of\: cuboid=l\times b\times h}}

Volumeofcuboid=l×b×h

\bf\underline{\red{According\:to\: Question;-}}

AccordingtoQuestion;−

Now find the volume of room

\begin{gathered}\sf\implies Volume \:of\:room=6m\times 5m\times3.5\\ \\ \sf\implies Volume =30m{}^{2}\times 3.5m\\ \\ \sf\implies Volume =105m{}^{3}\end{gathered}

⟹Volumeofroom=6m×5m×3.5

⟹Volume=30m

2

×3.5m

⟹Volume=105m

3

The volume of room is 105 cubic metre

Covert cubic metre to litre

\boxed{\sf{1m{}^{3}=1000litre}}

1m

3

=1000litre

\begin{gathered}\sf\implies 105m{}^{3}=1000\times 105\\ \\ \sf\implies 105000litre\end{gathered}

⟹105m

3

=1000×105

⟹105000litre

Answered by SachinGupta01
6

 \bf \:  \underline{Given} :

 \sf \: The \:  dimensions  \: of \:  the \:  room \:  are \:  given.

\begin{gathered}\begin{gathered}\begin{gathered}\tt\: Dimensions \begin{cases} &\sf{Length = 6 m } \\  &\sf{{Breadth = 5 m}}\\ &\sf{{Height = 3.5 m }} \end{cases}\end{gathered}\end{gathered}\end{gathered}

 \bf \:  \underline{To \: find} :

 \sf \: How \: many \: tanks \: of \: capacity \: 120 \: litres\:each, can \: it \: hold\: ?

 \bf \:  \underline{ \underline{Solution}} \:  :

 \underline{ \sf  First \: of \: all\: we \: will \: find \: the\: volume \: of \: the \: room.}

 \boxed{  \red{\sf \: Volume \: of \: cuboid = Length \times  Breadth \times  Height}}

 \implies \sf \: 6 \times 5 \times 3.5

 \implies \sf \: 30 \times 3.5

 \implies \sf \: 105.0 \: m ^{3}

 \underline{ \sf \: So,  \: the \:  volume \:  of \:  the \:  room \:  is  \: 105 \:  cubic \:  meter. }

 \sf \: Now,  we  \: will  \: convert  \: the  \: cubic  \: meter  \: into \: litres.

 \red{\implies \sf  \: 1  \: m ^{3} = 1000 \:  litres}

 \implies \sf \: 105.0 \: m ^{3}  = 105 \times 1000

 \implies \sf \: 105.0 \: m ^{3}  = 105000 \: litres

\sf \: So,

\boxed{\sf{\red{Tanks\:it\:can\: hold=\frac{C apacity\:of\:room}{C apacity\:of\:tanks}}}}

 \sf \: Putting \:  the  \: values,

\sf\implies T anks\: it \:can \:hold=\dfrac{105000}{120}

\sf\implies T anks\: it \:can \:hold=\dfrac{10500\!\!\!\not0}{12\!\!\!\not0}

\sf\implies T anks\: it \:can \:hold= 875

 \underline{\boxed{\sf{\pink{Number\:of\: tanks\:it\:can\:hold=875}}}}

Similar questions