Math, asked by Deveshm516, 2 months ago

A straight highway leads to the foot of a tower. A man standing at the top of

the tower observes a car at an angle of depression of 30°, which is approaching

the foot of the tower with a uniform speed. Six seconds later, the angle of

depression of the car is found to be 60°. Find the time taken by the car to

reach the foot of the tower from this point.​

Answers

Answered by ShírIey
58

\underline{\frak{Diagram:}}\\\\

⠀⠀⠀⠀

\setlength{\unitlength}{1.9cm}\begin{picture}(6,2)\linethickness{0.4mm}\put(8,1){\line(1,0){4}}\put(8,1){\line(0,2){1.9}}\qbezier(10.5,1)(10,1.4)(8,2.9)\qbezier(12,1)(11,1.4)(8,2.9)\put(7.5,2){\sf{\large{h}}}\put(8.2,1){\line(0,1){0.2}}\put(8,1.2){\line(3,0){0.2}}\qbezier(9.8,1)(9.7,1.25)(10,1.4)\qbezier(11,1)(10.8,1.2)(11.1,1.4)\put(9.6,1.2){\sf\large{60^\circ $ }}\put(10.2,1.3){\sf\footnotesize{30^ \circ $}}\put(11.9,.7){\sf\large B}\put(7.9,3){\sf\large A}\put(10.4,.7){\sf\large C}\put(7.9,.7){\sf\large D}\put(8.1,0.8){\vector(3,0){0.8}}\put(10.3,0.8){\vector( - 3,0){0.8}}\put(8.95,0.75){\sf ? m}\put(8.1,0.4){\vector(3,0){1.6}}\put(12,0.4){\vector( - 3,0){1.6}}\put(9.8,0.35){\sf  }\end{picture}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀⠀

Given: Man standing at the top of the tower observes a car at an angle of depression of 30°. Six seconds later, angle of depression of the card is found to be 60°. Height of the tower is AD.

⠀⠀⠀⠀

Need to find: We've to find out CD.

⠀⠀⠀⠀⠀

\bigstar\:{\underline{\sf{In\: right\:angled\:\triangle\:ACD,}}}\\ \\

:\implies\sf tan \; C = \dfrac{AD}{CD} \\\\\\:\implies\sf tan\;60^{\circ} = \dfrac{AD}{CD} \\\\\\:\implies\sf  30^{\circ} = \dfrac{AD}{CD}\\\\\\:\implies\sf  \sqrt{3} CD = AD\\\\\\:\implies\sf AD = \sqrt{3} CD \qquad\quad\bigg\lgroup\bf Equation\;(I)\bigg\rgroup

⠀⠀⠀⠀

\bigstar\:{\underline{\sf{In\: right\:angled\:\triangle\:ABD,}}}\\ \\

:\implies\sf tan\;60^{\circ} = \dfrac{AD}{BD}\\\\\\:\implies\sf \dfrac{1}{\sqrt{3}} = \dfrac{AD}{BD}\\\\\\:\implies\sf \dfrac{BD}{\sqrt{3}} = AD\\\\\\:\implies\sf AD = \dfrac{BD}{\sqrt{3}}\qquad\quad\bigg\lgroup\bf Equation \;(II)\bigg\rgroup

⠀⠀⠀

\underline{\bf{\dag} \:\mathfrak{Comparing\;both\; equations\: :}}⠀⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{3}CD = \dfrac{BD}{\sqrt{3}}\\\\\\:\implies\sf \sqrt{3}\Big(\sqrt{3} CD\Big) = BD\\\\\\:\implies\sf   3CD = BD

⠀⠀⠀⠀

  • With the help of diagram we can see that BD is (BC + CD). Therefore,

⠀⠀⠀⠀

:\implies\sf 3CD = BC + CD\\\\\\:\implies\sf  3CD - CD = BC \\\\\\:\implies\sf 2CD = BC\\\\\\:\implies\sf  CD = \dfrac{BC}{2}\qquad\quad\bigg\lgroup\bf Equation\;(III)\bigg\rgroup

⠀⠀⠀⠀⠀

\underline{\bf{\dag} \:\mathfrak{By \;using\; equation\; (3)\: :}}⠀⠀⠀⠀

  • Time to cover BC is given which is 6 seconds. Now,

⠀⠀⠀⠀

:\implies\sf CD = \dfrac{BC}{2}\\\\\\:\implies\sf  CD = \cancel\dfrac{6}{2}\\\\\\:\implies{\underline{\boxed{\frak{\pink{CD = 3}}}}}\;\bigstar

⠀⠀⠀⠀⠀

\therefore{\underline{\sf{Hence, \; required\;time\;taken\;is\;\bf{ 3\; seconds}.}}}

Answered by Anonymous
17

Answer :-

Let height be AO

And triangle be ABC

So

tan C = AO/CO

Tan 60 = AO/CO

\sf \sqrt{3} CO = AO

\sf AO = \sqrt{3}CO

Now

tan 60 = A0/BO

\frac{1}{\sqrt{3}} = \frac{AO}{BO}

AO = CO/\sf \sqrt{3}

on comparing

\sf \sqrt{3} CO =  \frac{BD}{\sqrt{3} }

\sf 3CO = BO

Now

3CO = BC + CO

3CO - CD = BC

2CO = BC

CO = BC/2

Now

CD = 6/2 = 3 SEC

Similar questions