Math, asked by lisakar98, 1 year ago

A straight line L with negative slope passes through (8, 2) and cuts the positive axes at P and Q.
As L varies, the absolute minimum value of OP + OQ is (O is origin)
(A) 10 (B) 18
(C) 16 (D) 12

Answers

Answered by kvnmurty
54
let slope = - m ,  where m > 0.
let point A be (8, 2).

equation of L :  y = - m x + c.    It passes through A.
                       2 = - m * 8 + c  =>  c = 2 + 8 m
     OP = x intercept , ie., value of x when y = 0.
           0 = - m * OP + c  = - m * OP + 2 + 8 m
         => OP = 2 / m + 8
     OQ = y intercept , ie., value of y when x = 0
           OQ = c = 2 + 8 m

 OP + OQ = 8 m + 10 + 2 / m
 derivative of (OP + OQ) wrt m :  8 - 2 / m²
   derivative = 0 when:  m = +1/2  or  -1/2.  we take only the positive value.
 
minimum value of OP + OQ = 4 + 10 + 4 = 18
=========================================
simpler method:

 The equation of L in the intercept form:  x/OP + y/OQ = 1
 We are given that OP and OQ are positive.  As L passes through A (8, 2):
        8/OP + 2/OQ = 1
        8 OQ + 2 OP = OP * OQ
        OP = 8 OQ / (OQ - 2)

The sum of intercepts :  OP + OQ = 8 OQ / (OQ - 2) + OQ

Derivative of OP + OQ wrt  OQ:  [ (OQ -2) * 8 - 8 OQ * 1 ] /(OQ - 2)²  + 1
             = 1 - 16 /(OQ - 2)²
Derivative is 0  when  (OQ - 2)² = 16
           OQ - 2 = +4 or -4
           OQ = 6  or  -2.  we take only the positive value.
Minimum value of  OP + OQ =  8 * 6/(6-2) + 6
               = 12 + 6 = 18

Answered by chintalasujat
4

Answer:

Step-by-step explanation:

 The equation of L in the intercept form:  x/OP + y/OQ = 1

 We are given that OP and OQ are positive.  As L passes through A (8, 2):

       8/OP + 2/OQ = 1

       8 OQ + 2 OP = OP * OQ

       OP = 8 OQ / (OQ - 2)

The sum of intercepts :  OP + OQ = 8 OQ / (OQ - 2) + OQ

Derivative of OP + OQ wrt  OQ:  [ (OQ -2) * 8 - 8 OQ * 1 ] /(OQ - 2)²  + 1

            = 1 - 16 /(OQ - 2)²

Derivative is 0  when  (OQ - 2)² = 16

          OQ - 2 = +4 or -4

          OQ = 6  or  -2.  we take only the positive value.

Minimum value of  OP + OQ =  8 * 6/(6-2) + 6

              = 12 + 6 = 18

Similar questions