Math, asked by srinivasthota1554, 7 months ago

A straight line L with negative slope passes through the point (1,1) and cuts the positive coordinate
axes at the points A and B. If O is the origin then the minimum value of OA+OB as L varies, is
1) 1
2) 2
3) 3
4) 4​

Answers

Answered by shadowsabers03
5

Let the angle of inclination of the line be \theta with positive x axis, which is an obtuse angle since the line has negative slope.

Let the points of intercepts A and B be at positive x and y axes respectively, so that their coordinates are taken as (a, 0) and (0, b) respectively.

Therefore,

  • OA=a
  • OB=b

Combining the points (a, 0) and (1, 1), the slope can be written as,

\longrightarrow\tan\theta=\dfrac{1-0}{1-a}

\longrightarrow\tan\theta=\dfrac{1}{1-a}

Taking the reciprocal we get,

\longrightarrow\cot\theta=1-a

\longrightarrow a=1-\cot\theta

Combining the points (0, b) and (1, 1), the slope can be written as,

\longrightarrow\tan\theta=\dfrac{1-b}{1-0}

\longrightarrow\tan\theta=1-b

\longrightarrow b=1-\tan\theta

Then, value of OA + OB will be,

\longrightarrow a+b=(1-\cot\theta)+(1-\tan\theta)

\longrightarrow a+b=2-\tan\theta-\cot\theta\quad\quad\dots(1)

To find minimum value of a+b, we can equate derivative of a+b wrt \theta as zero.

\longrightarrow\dfrac{d}{d\theta}(a+b)=0

\longrightarrow\dfrac{d}{d\theta}(2-\tan\theta-\cot\theta)=0

\longrightarrow0-\sec^2\theta-(-\csc^2\theta)=0

\longrightarrow\csc^2\theta-\sec^2\theta=0

\longrightarrow\csc^2\theta=\sec^2\theta

\longrightarrow\dfrac{\sec^2\theta}{\csc^2\theta}=1

\longrightarrow\tan^2\theta=1

Since \theta is an obtuse angle,

\longrightarrow\tan\theta=-1

\Longrightarrow\theta=135^o

Then (1) becomes,

\longrightarrow a+b=2-\tan135^o-\cot135^o

\longrightarrow a+b=2-(-1)-(-1)

\longrightarrow\underline{\underline{a+b=4}}

Hence (4) is the answer.

Attachments:
Similar questions