A straight line passes through P(2, 1) and cuts the axes in points A,B. If BP:AP = 3:1, find
i) The co-ordinates of A and B
ii) The equation of the line AB
Answers
Answered by
1
Answer:
This implies that
x2+2ax=4x−4a−13
or
x2+2ax−4x+4a+13=0
or
x2+(2a−4)x+(4a+13)=0
Since the equation has just one solution instead of the usual two distinct solutions, then the two solutions must be same i.e. discriminant = 0.
Hence we get that
(2a−4)2=4⋅1⋅(4a+13)
or
4a2−16a+16=16a+52
or
4a2−32a−36=0
or
a2−8a−9=0
or
(a−9)(a+1)=0
So the values of a are −1 and 9.
Answered by
0
Answer:
2+2ax=4x−4a−13
or
x2+2ax−4x+4a+13=0
or
x2+(2a−4)x+(4a+13)=0
Since the equation has just one solution instead of the usual two distinct solutions, then the two solutions must be same i.e. discriminant = 0.
Hence we get that
(2a−4)2=4⋅1⋅(4a+13)
or
4a2−16a+16=16a+52
or
4a2−32a−36=0
or
a2−8a−9=0
or
(a−9)(a+1)=0
So the values of a are −1 and 9.
Step-by-step explanation:
Similar questions
Computer Science,
2 months ago
Math,
2 months ago
Math,
2 months ago
Physics,
4 months ago
Math,
10 months ago