Math, asked by Ammzzz, 6 months ago

A straight line passes through the point P(2,1) and cuts the axes in points A, B. If BP: PA = 3:1. Find (i) coordinates of A and B. (ii) the equation of the line AB.​

Answers

Answered by MaheswariS
8

\underline{\textbf{Given:}}

\textsf{A straight line passes through the point P(2,1) and}

\textsf{cuts the axes in points A ,B and BP : PA=3:1}

\underline{\textbf{To find:}}

\textsf{(i) Co-ordinates of A and B}

\textsf{(ii) Equation of the line AB}

\underline{\textbf{Solution:}}

\textsf{Since the line cuts the co-ordinate axes at A and B,}

\textsf{take A and B as (a,0) and (0,b) respectively}

\mathsf{BP:PA=3:1\;\implies\;AP:BP=1:3}

\implies\textsf{P divides AB internally in the ratio 1:3}

\textsf{By Section formula, the co-ordinates of P is}

\mathsf{\left(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)=(2,1)}

\mathsf{\left(\dfrac{1(0)+3(a)}{1+3},\dfrac{1(b)+3(0)}{1+3}\right)=(2,1)}

\mathsf{\left(\dfrac{3a}{4},\dfrac{b}{4}\right)=(2,1)}

\implies\mathsf{\dfrac{3a}{4}=2\;\;\;and\;\;\;\dfrac{b}{4}=1}

\implies\mathsf{a=\dfrac{8}{3}\;\;\;and\;\;\;b=4}

\therefore\mathsf{A\left(\dfrac{8}{3},0\right)\;\;\;and\;\;\;B(0,4)}

\textsf{Using Intercept form, Equation of line AB is}

\mathsf{\dfrac{x}{a}+\dfrac{y}{b}=1}

\mathsf{\dfrac{x}{\dfrac{8}{3}}+\dfrac{y}{4}=1}

\mathsf{\dfrac{3x}{8}+\dfrac{y}{4}=1}

\mathsf{\dfrac{3x+2y}{8}=1}

\implies\boxed{\mathsf{3x+2y-8=0}}

Similar questions