a straight line passing through origin and inclined at 60° to the line √3x+y=1 is
Answers
Answer:
y = √3x (or) y = 0
Step-by-step explanation:
Given that the line passes through the origin. So, its coordinates will be O(0,0)
Slope of the given line: √3x + y = 1 i.e m₁ = -√3.
Let the slope of the required line which makes 60° with above line is m.
∴ tan 60° = |-√3 - m/1 - √3m|
⇒ √3 = |-√3 - m/1 - √3m|
⇒ -√3 - m = √3 - 3m (or) -√3 - m = -√3 + 3m
⇒ m = √3 (or) m = 0
Given that line is passing through (0,0).
Hence, the equation for the required line is:
⇒ y + 0 = √3(x - 0) (or) y + 0 = 0(x - 0)
⇒ y = √3x (or) y = 0
Hope it helps!
Answer:
y = 0
y = √3 x
Step-by-step explanation:
Given :
√3 x + y = 1
The line passes through the origin and is inclined 60° with the line √3 x + y = 1
y + √3 x = 1
⇒ y = 1 - √3 x
Comparing with y = m x + c :
⇒ m = -√3
Let the slope of the line be M
m = | ( -√3 - M ) / ( 1 - √3 M ) |
⇒ tan 60 = | ( -√3 - M ) / ( 1 - √3 M ) |
⇒ √3 = | ( -√3 - M ) / ( 1 - √3 M ) |
EITHER
⇒ √3 = ( -√3 - M ) / ( 1 - √3 M )
⇒ √3 - 3 M = -√3 - M
⇒ 2 M = 2√3
⇒ M = √3
OR
-√3 = ( -√3 - M ) / ( 1 - √3 M )
⇒ -√3 + 3 M = - √3 - M
⇒ 4 M = 0
⇒ M = 0
When M = √3
y - y1 = √3 ( x - x1 )
⇒ y - 0 = √3 x - 0
⇒ y = √3 x
When M = 0
y - y1 = 0 ( x - x1 )
⇒ y - 0 = 0
⇒ y = 0