A STRAIGHT LINE SEGMENT AB IS BISECTED AT C AND PRODUCED TO D . SHOW THAT AD + BD = 2CD
Answers
Answered by
2
so AC = CB
AD = AB + BD
AD + BD = AB + 2BD
AD + BD = AC + BD + CB + BD
AD + BD = CB + BD + CB + BD [SINCE AC = CB]
AD + BD = CD + CD
AD + BD = 2CD HENCE PROVED
AD = AB + BD
AD + BD = AB + 2BD
AD + BD = AC + BD + CB + BD
AD + BD = CB + BD + CB + BD [SINCE AC = CB]
AD + BD = CD + CD
AD + BD = 2CD HENCE PROVED
Anonymous:
hope it helps
Answered by
1
sice C bisects
so AC = CB
AD = AB + BD
AD + BD = AB + 2BD
AD + BD = AC + BD + CB + BD
AD + BD = CB + BD + CB + BD (since AC = CB)
AD + BD = CD + CD
AD + BD = 2CD
so proved
so AC = CB
AD = AB + BD
AD + BD = AB + 2BD
AD + BD = AC + BD + CB + BD
AD + BD = CB + BD + CB + BD (since AC = CB)
AD + BD = CD + CD
AD + BD = 2CD
so proved
Similar questions