Physics, asked by fejiro, 1 year ago

A stretched wire under tension T produces a note of frequency 60Hz when plucked. calculate the frequency if the tension in the wire is increased by 125%

Answers

Answered by Anonymous
0

]|I{•------» sᴏʟᴜᴛɪᴏɴ «------•}I|[

f  =  KT                                                                                                                

          f1  =  60  =  kT        ………………..  (1)                                                                

          f2   =  k    T        ………………… (2)                                                                

       Divide   equation (2) by equation (1)

         =     T

                       T

        F2   =     X   60

          f2     =    90Hz                                                                                                        

   


fejiro: sorry how does f=kT
fejiro: so where does tension come from
Answered by Anonymous
7

\huge\bf\mathscr\orange{Your\: Answer}

96 Hz

step-by-step explanation:

we know that,

frequency, f = K√T .............(i)

where,

K is a constant

and

T is tension

Now,

we know that,

absolute error in frequency is given by,

∆f = K × 1/2√T × ∆T ............(ii)

but,

from eqn (i),

k = f/√T

now,

putting this vakue of K in eqn (ii),

we get,

∆f/f = ∆T/2T

but,

A.T.Q,

∆T/T = 125/100

so,

putting this value,

we get,

∆f/f = 125/200

=> ∆f/f = 0.625

=> f = ∆f/ 0.625

But,

from question,

∆f = 60

.°. f = 60/0.625

=> f = 96 Hz

Hence,

frequency in the wire = 96 Hz

Similar questions