A student noticed that the roots of the equation x² + bx + a = 0 are each 1 less than the roots of the equation x² + ax + b = 0. Then a + b = ?
Answers
If δ and Ψ are the roots of Quadratic Equation px² + qx + r = 0 then :
✿ Sum of the roots : δ + Ψ
✿ Product of the roots : δ × Ψ
Let the Roots of the Equation x² + ax + b = 0 be 'α' and 'β'
⇒ Sum of the roots : α + β = -a
⇒ Product of the roots : α × β = b
Given : The Roots of the Equation x² + bx + a = 0 are each 1 less than the roots of the Equation x² + ax + b = 0
⇒ The Roots of the Equation x² + bx + a = 0 are (α - 1) and (β - 1)
⇒ Sum of the Roots : (α - 1) + (β - 1) = -b
⇒ (α + β) - 2 = -b
But, We know that : (α + β) = -a
⇒ (-a - 2) = -b
⇒ a + 2 = b
⇒ a - b = -2 --------- [1]
⇒ Product of the Roots : (α - 1)(β - 1) = a
⇒ αβ - (α + β) + 1 = a
But, We know that : α × β = b and α + β = -a
⇒ b + a + 1 = a
⇒ b = -1
Substituting b = -1 in Equation [1], We get :
⇒ a + 1 = -2
⇒ a = -3
⇒ a + b = (-3 - 1) = -4
Answer:
a + b = -4
Step-by-step explanation:
Let the roots of the equation is α,β.
(1)
Given quadratic equation is x² + bx + a = 0.
Here, a = 1, b = b, c = a
(i)
Sum of roots = -b/a
α + β = -b.
(ii)
Product of roots = c/a
αβ = a
(2)
Given Equation is x² + ax + b = 0.
Here, a = 1, b = a, c = b
Given that roots are each 1 less than the roots of equation x² + ax + b.
(iii)
Sum of roots = -b/a
(α - 1) + (β - 1) = -a
(iv)
Product of roots = c/a
(α - 1)(β - 1) = b
αβ - (α + β) + 1 = b
a - (-b) + 1 = b
a + b + 1 = b
a + 1 = 0
a = -1. --------- (iv)
Substitute a = -1 in (iii), we get
⇒ α - 1 + β - 1 = -a
⇒ - b- 2 = -a
⇒ -(b + 2) = -a
⇒ a = b + 2 ------ (v)
Substitute (iv) in (v), we get
⇒ -1 = b + 2
⇒ b = -3.
Hence:
⇒ a + b
⇒ -1 - 3
⇒ -4.
Therefore,a + b = -4.
Hope it helps!