Math, asked by sachinsonawane90, 1 day ago

A students council of 6 members is to be formed from a selection pool of 8 males and 9 females . How many committee's will have at least 4 females?​

Answers

Answered by mathdude500
4

 \green{\large\underline{\sf{Solution-}}}

Given that

A students council of 6 members is to be formed from a selection pool of 8 males and 9 females.

We have to choose 6 members so that there are atleast 4 females.

So, following case arises

\begin{gathered}\boxed{\begin{array}{c|c} \bf Male (8)& \bf Female(9) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 2 & \sf 4 \\ \\ \sf 1 & \sf 5 \\ \\ \sf 0 & \sf 6 \end{array}} \\ \end{gathered}

We know,

The number of ways in which r objects can be selected from n distinct objects are

\boxed{\tt{  \: ^nC_r \:  =  \:  \frac{n!}{r! \: (n - r)! \: }}}

So, number of ways of selecting 2 males and 4 females from 8 males and 9 females is

\rm \:  =  \: ^8C_2 \:  \times  \: ^9C_4

\rm \:  =  \: \dfrac{8 \times 7}{2}  \times \dfrac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1}

\rm \:  =  \: 28 \times 126

\rm \:  =  \: 3328

Now, number of ways of selecting 1 males and 5 females from 8 males and 9 females is

\rm \:  =  \: ^8C_1 \:  \times  \: ^9C_5

\rm \:  =  \: \dfrac{8}{1}  \times \dfrac{9 \times 8 \times 7 \times 6 \times 5}{5 \times 4 \times 3 \times 2 \times 1}

\rm \:  =  \: 8 \times 126

\rm \:  =  \: 1008

Again, number of ways of selecting 0 males and 6 females from 8 males and 9 females is

\rm \:  =  \: ^8C_0 \:  \times  \: ^9C_6

\rm \:  =  \: 1 \:  \times  \: ^9C_3

\rm \:  =  \: \dfrac{9 \times 8 \times 7}{3 \times 2 \times 1}

\rm \:  =  \: 84

Hence,

Total number of ways in which a students council of 6 members is to be formed from a selection pool of 8 males and 9 females, comprised of atleast 4 females is

\rm \:  =  \: 3328 + 1008 + 84

\rm \:  =  \: 4420

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\tt{ \:  ^{n}C_{r} \:  =  \:  ^{n}C_{n - r} \: }}

\boxed{\tt{  \:  ^{n}C_{0} \:  =  \:  ^{n}C_{n} \:  =  \: 1 \: }}

\boxed{\tt{  \:  ^{n}C_{1} \:  =  \:  ^{n}C_{n - 1} \:  =  \: n \: }}

\boxed{\tt{  \:  ^{n}C_{r} \:  +  \:  ^{n}C_{r - 1} \:  =  \:  ^{n + 1}C_{r} \: }}

\boxed{\tt{  \frac{ \:  ^{n}C_{r} \: }{ \:  ^{n}C_{r - 1} \: }  =  \:  \frac{n - r + 1}{r}  \: }}

Similar questions