Math, asked by dharadearyan, 1 month ago

A sum amounts to * 2,970.25 in 2 years at 9% per annum, compounded annually.
Find the sum.​

Answers

Answered by SachinGupta01
25

 \bf \:  \underline{Given}  :

 \sf \: Amount =   Rs. \:  2970.25

 \sf \: Rate = 9 \: \%

 \sf \: Time = 2  \: Years

 \bf \:  \underline{To  \: find} :

 \sf \: We  \: have  \: to \:  find \:   the  \: (Sum)  \: Principal.

 \bf \star \:  \underline{So,  \: Let's  \: Start}   \: \star

  \sf \: We  \: know  \: that :

 \ \boxed{  \pink{\sf \: Amount = P  \:  \bigg(1 +  \dfrac{R }{100}  \bigg) ^{n} }}

 \sf \:  \underline{Putting  \: the  \: values}

\sf \:2970.25  = P  \:  \bigg(1 +  \dfrac{9 }{100}  \bigg) ^{2}

\sf \:2970.25  = P  \:  \bigg(\dfrac{109 }{100}  \bigg) ^{2}

\sf \:2970.25  = P \:  \times   \:  \dfrac{109 }{100} \:  \times  \:  \dfrac{109 }{100}

 \bf \: \underline{ Now},

 \dfrac{2970.25 \times 100 \times 100}{109 \times 109}

 \sf \: Now,  \: we  \: will  \: remove \:  the \:  decimal.

 \dfrac{297025 \times 100 \times 100}{100 \times 109 \times 109}

 \sf \: Now,  \: we  \: will  \: simplify  \: the  \: above \:  expression.

 \dfrac{1188 \times 100 \times 100}{4\times 109 \times 109}

 \dfrac{109\times 100 \times 100}{4\times 109 }

 \dfrac{ 100 \times 100}{4}

 \sf \:  \dfrac{ 25 \times 100}{1}  \:

 \sf \: 25 \times 100 \:  =  \: 2500

 \purple{ \sf \: So, \:  our  \: answer  \: is \:  Rs. \:  2500. }

Answered by WildCat7083
34

{  \red{\sf \: Amount = P \: \bigg(1 + \dfrac{R }{100} \bigg) ^{n} }} \\  \\ \sf⇛ \:2970.25 = P \: \bigg(\dfrac{109 }{100} \bigg) ^{2} \\  \\⇛ \sf \: 2970.25=p \times  ( \frac{ 109  }{ 100  }  )  ^ { 2  } \\  \\  \sf \:  {\green{Calculate \:  \frac{109}{100} \:  to \:  the  \: power \:  of \:  2 \:  and  \: get \:  \frac{11881}{10000}}} \\  \\ ⇛ \sf \: 2970.25=p\times \left(\frac{11881}{10000}\right)  \\  \\ ⇛ \sf \: p\times \left(\frac{11881}{10000}\right)=2970.25  \\  \\  \sf \: { \green{Multiply  \: both  \: sides  \: by \:  \frac{10000}{11881},  \: the  \: reciprocal  \: of \:  \frac{11881}{10000}}} \\  \\ ⇛\sf \:  p=2970.25\times \left(\frac{10000}{11881}\right)  \\  \\  \sf \: { \green{Convert \:  decimal  \: number  \: 2970.25 \:  to \:  fraction \:  \frac{297025}{100} }} \\ \sf \:{ \green{ Reduce \:  the \:  fraction \:  \frac{297025}{100}  \: to \:  lowest  \: terms \:  by}} \\  \sf \:  { \green{ extracting \:  and \:  cancelling \:  out \:  25}} \\  \\ ⇛\sf \: p=\frac{11881}{4}\times \left(\frac{10000}{11881}\right)  \\  \\⇛  \sf \: p=\frac{11881\times 10000}{4\times 11881}  \\  \\⇛ \sf \:  p=\frac{10000}{4}  \\  \\⇛ \sf \:  p=2500 \\ \\ \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \large \sf{ \red{{@WildCat7083 }}} \\

Similar questions