Math, asked by gunnukhandelwal666, 11 months ago

a sum becomes Rs 1323 in 2 years and Rs 138 9.15 in 3 years when is interest compound annually find the sum?​

Answers

Answered by MaheswariS
13

\textbf{Concept used:}

\text{Compound interest formula:}

\boxed{\textbf{Amount,}\bf\,A=P(1+\frac{r}{100})^n}

\text{When n=2 years,}

1323=\displaystyle\,P(1+\frac{r}{100})^2.....(1)

\text{When n=3 years,}

1389.15=\displaystyle\,P(1+\frac{r}{100})^3.....(2)

\text{Divide (2) by (1), we get}

\displaystyle\frac{P(1+\frac{r}{100})^3}{P(1+\frac{r}{100})^2}=\frac{1389.15}{1323}

\implies\displaystyle\,1+\frac{r}{100}=\frac{1389.15}{1323}

\implies\displaystyle\,100+r=\frac{138915}{1323}

\implies\displaystyle\,r=\frac{138915}{1323}-100

\implies\displaystyle\,r=\frac{138915-132300}{1323}

\implies\displaystyle\,r=\frac{6615}{1323}

\implies\bf\,r=5%

\text{Now (1) becomes}

\displaystyle\,1323=P(1+\frac{5}{100})^2

\displaystyle\,1323=P(\frac{105}{100})^2

\displaystyle\,1323=P(\frac{21}{20})^2

\displaystyle\,P=\frac{1323{\times}20{\times}20}{21{\times}21}

P=\displaystyle\,\frac{63{\times}20{\times}20}{21}

\displaystyle\,P=\frac{3{\times}20{\times}20}{1}

\implies\displaystyle\textbf{P=Rs.1200}

\therefore\textbf{The required sum is Rs. 1200}

Find more:

The compound interest on a certain sum for 2 years at 8% per annum is 1040. The SI on it at the same ratio for 2 years

https://brainly.in/question/9592468

Similar questions