Math, asked by shivangi37, 1 year ago

A sum of $3000 rupees is to given in the form of 63 prizes. If a prizes is of either$100 rupee or of $ 25 , find the number of prizes number of each type.

Answers

Answered by mathsir
1
$25 prizes are x in number
So number of $100 prizes are (63-x)
So 25x + 6300 - 100x = 3000
=> 75x = 3300
x = 3300/75 = 44
So 44 number of $25 prizes and 19 number of $100 prizes

shivangi37: answer
shivangi37: give me please note
mathsir: I have given the answer. What do you want more?
Answered by samimpapa354
0

Answer:

\underline\mathfrak{Given:-}

\: \: \: \: \: \: \: Total \: \: prize \: \: = \: \: {63}

\: \: \: \: \: \: \: Cast \: \: of \: \: all \: \: prize \: \: = \: \: {3000}

\underline\mathfrak{To \: \: Find:-}

\: \: \: \: \: The \: \: number \: \: of \: \: prize?

\underline\mathfrak{Solutions:-}

\: \: \: \: \: \: \: Let \: \: the \: \: number \: \: of \: \: {100} \: rupees \: \: prize \: \: be \: \: x

\: \: \: \: \: \: \: Let \: \: the \: \: number \: \: of \: \: {25} \: rupees \: \: prize \: \: be \: \: y

\: \: \: \: \: \therefore Total \: \: cast \: \: of \: \: prize \: \: \leadsto \: \: {3000}.

\: \: \: \: \: \leadsto {100x} \: + \: {25y} \: \: = \: \: {3000}

\: \: \: \: \: divide \: \: both \: \: side \: \: by \: \: {25} \: \: we \: \: get.

\: \: \: \: \: \leadsto {4x} \: + \: {y} \: \: = \: \: {120} \: \: \: \: \:..{(1)}.

\: \: \: \: \: And \: \: number \: \: of \: \: prize \: \: of \: \: {100} \: \: and \: \: {25} \: \: rupees

\: \: \: \: \: \leadsto {x} \: + \: {y} \: \: = \: \: {63} \: \: \: \: \:..{(2)}.

\: \: \: \: \: From \: \: Eq. \: \: {(1)} \: \: and \: \: {(2)}

\: \: \: \: \: \leadsto {4x} \: + \: {y} \: \: - \: \: {x} \: \: - \: \: {y} \: \: = \: \: {120} \: \: - \: \: {63}

\: \: \: \: \: \leadsto {3x} \: \: = \: \: {57}

\: \: \: \: \: \leadsto {x} \: \: = \: \: {19}

\: \: \: \: \: putting \: \: value \: \: of \: \: x \: \: in \: \: Eq. \: {(1)}.

\: \: \: \: \: \leadsto {4} \: + \: {y} \: \: = \: \: {120}

\: \: \: \: \: \leadsto {4x} \: \times \: {19} \: + \: {y} \: \: = \: \: {120}

\: \: \: \: \: \leadsto {76} \: + \: {y} \: \: = \: \: {120}

\: \: \: \: \: \leadsto {y} \: \: = \: \: {120} \: - \: {76}

\: \: \: \: \: \leadsto {y} \: \: = \: \: {54}

\: \: \: \: \: The \: \: numbers \: \: {100} \: \: rupees \: \: prize \: \: \leadsto \: \: {19}

\: \: \: \: \: The \: \: numbers \: \: {25} \: \: rupees \: \: prize \: \: \leadsto \: \: {54}

______________________________

Similar questions