Math, asked by pandithim74, 11 months ago

a sum of 700 rupees is to be used to give seven cash prizes to student of a school for their overall academic performance if each prize is 20 less than its preceding prize find the value of each of the prizes ​

Answers

Answered by BrainlyKing5
63

Answer

Given

  • A sum of 700 rupees is to be used to give seven cash prizes to student of a school for their overall academic performance.

  • Each prize is 20 less than its preceding prize.

To Find

The value of each of the prizes .

Solution

Now According To Question Let,

\mathsf{\longrightarrow \: {1}^{st} \: price \: be (a_1) = a}

\mathsf{\longrightarrow \: {2}^{nd} \: price \: be (a_2) = a - 20}

\mathsf{\longrightarrow \: {3}^{rd} \: price \: be (a_3) = (a - 20) - 20 = a - 40}

So on.....

Now we have formula to find Sum of A.P , that is...

\mathsf{\longrightarrow \: Common \: difference (d) = a_2 - a_1 =  (a - 20)- a = -20}

\mathsf{\longrightarrow \: Common \: difference (d) = a_3 - a_2=  (a - 20)- a = -20}

Since Difference are same we can say that it's in A.P

Now we know

\boxed{ \mathsf{\bigstar \: S_n = \dfrac{n}{2}\bigg( 2a + (n - 1)d \bigg)}}

Where

\longrightarrow \: \mathsf{S_n = Sum \: of \: n \: terms}

\longrightarrow \: \mathsf{a = First \: term\: of \: AP}

\longrightarrow \: \mathsf{n = Number \: of \: terms }

\longrightarrow \: \mathsf{d = Common \: difference}

Now Here,

\longrightarrow \: \mathsf{S_n = 700rs}

\longrightarrow \: \mathsf{a = First \: price (a_1) = ? }

\longrightarrow \: \mathsf{d = -20 }

\longrightarrow \: \mathsf{n = Number \: of \: prices = 7}

Putting this values in above formula we have

\mathsf{\Longrightarrow \: S_n = \dfrac{n}{2} \bigg( 2a + (n - 1)d \bigg)}

\mathsf{\longrightarrow \: 700 = \dfrac{7}{2} \bigg( 2a + (7 - 1)(-20)\bigg)}

\mathsf{\longrightarrow \: 700 = \dfrac{7}{2} \bigg( 2a + (6)(-20)\bigg)}

\mathsf{\longrightarrow \: 700 = \dfrac{7}{2} \bigg( 2a -120 \bigg)}

\mathsf{\longrightarrow \: 700 = 7(a - 60)}

\mathsf{\longrightarrow \: 700 = 7a - 420}

\mathsf{\longrightarrow \: 700 + 420= 7a}

\mathsf{\longrightarrow \: 7a = 1120}

\mathsf{\longrightarrow \: a = \dfrac{1120}{7} = 160}

Therefore we have,

\mathsf{\longrightarrow \: {1}^{st} \: Price (a_1) = a = 160rs}

\mathsf{\longrightarrow \: {2}^{nd}\: Price (a_2) = a_1 - 20 \to 160rs - 20 = 140rs}

\mathsf{\longrightarrow \: {3}^{rd}\: Price (a_3) = a_2 - 20 \to 140rs - 20 = 120rs}

\mathsf{\longrightarrow \: {4}^{th}\: Price (a_4) = a_3 - 20 \to 120rs - 20 = 100rs}

\mathsf{\longrightarrow \: {5}^{th}\: Price (a_5) = a_4 - 20 \to 100rs - 20 = 80rs}

\mathsf{\longrightarrow \: {6}^{th}\: Price (a_6) = a_5 - 20 \to 80rs - 20 = 60rs}

\mathsf{\longrightarrow \: {7}^{th}\: Price (a_7) = a_6 - 20 \to 60rs - 20 = 40rs}

\rule{290}{1}

 \large \underline{\underline{\red{ \mathsf{ \:  \: \star \: More \:  To \:  Know \: \star \:  \:  }}}}

\mathsf{\longrightarrow \: {N}^{th} \: term \: of \: an \: A.P}

\boxed{\mathsf{\star \: a_n = a + (n - 1)d}}

Where,

\to \mathsf{a_n \: = {n}^{th} \: term}

\to \: \mathsf{a = First \: term\: of \: AP}

\to \: \mathsf{n = Number \: of \: terms }

\to \: \mathsf{d = Common \: difference}

\rule{290}{1}

#answerwithquality

#BAL

Similar questions