Math, asked by rakkivarma855, 3 months ago

A sum of money invested at compound interest amounts to rs. 4624 in 2 years and to rs. 4913 in 3 years. the sum of money is​

Answers

Answered by Anonymous
13

Answer :-

Let the sum of money be x and rate of interest be R.

We know that,

\implies\sf A = x \times \Big(1 + \dfrac{R}{100}\Big)^n

For 2 years :-

\implies\sf 4624 = x \times \Big(1 + \dfrac{R}{100}\Big)^2 \:  \:  \:  \:  \:  \: -i

For 3 years :-

\implies\sf 4913 = x \times \Big(1 + \dfrac{R}{100}\Big)^3  \:  \:  \:  \:  \:  \: -ii

Dividing equation i by ii :-

\implies\sf \dfrac{4913}{4624} = \dfrac{x \times \Big(1 + \dfrac{R}{100}\Big)^3 }{x \times \Big(1 + \dfrac{R}{100}\Big)^2}

\implies\sf \dfrac{17\times 17\times 17}{17 \times 17 \times 16} = 1 + \dfrac{R}{100}

\implies\sf \dfrac{17}{16} = \dfrac{100+R}{100}

\implies\sf 100 \times 17 = 16 ( 100 + R )

\implies\sf 1700 = 1600 + 16 R

\implies\sf 16 R = 100

\implies\sf R = \dfrac{100}{16}

\implies\sf R = 6.25

Substituting the value in equation i :-

\implies\sf 4624 = x \times \Big(1 + \dfrac{R}{100}\Big)^2

\implies\sf 4624 = x \times \Big( 1 + \dfrac{6.25}{100}\Big)^2

\implies\sf 4624 = x \times \Big( \dfrac{17}{16} \Big)^2

\implies\sf x = \dfrac{4624}{\Big( \dfrac{17}{16} \Big)^2}

\implies\sf x = 4096

Sum of money = Rs. 4096

Similar questions