Math, asked by rishavsharmars01, 1 month ago

A sum of money invested at compound interest of 8%p a , compounded annuly amounted to 7290in two year Find the sum invested​

Answers

Answered by Anonymous
48

Given :

  • ➬ Amount = ₹ 7290
  • ➬ Rate = 8 %
  • ➬ Time = 2 years

To Find :

  • ➬ Principle = ?

Solution :

Formula Used :

\large{\gray{\bigstar}} \: \: {\underline{\boxed{\red{\sf{ A = P \bigg[1 + \dfrac{R}{100} \bigg]^T }}}}}

Where :

  • {\blue{\rightarrowtail}}{\sf{ A = Amount }}
  • {\blue{\rightarrowtail}}{\sf{ P = Principle }}
  • {\blue{\rightarrowtail}}{\sf{ R = Rate }}
  • {\blue{\rightarrowtail}}{\sf{ T = Time}}

Finding the Principal :

{:\implies{\qquad{\sf{ A = P \bigg[1 + \dfrac{R}{100} \bigg]^T }}}}

{:\implies{\qquad{\sf{ 7290 = P \bigg[1 + \dfrac{8}{100} \bigg]^2 }}}}

{:\implies{\qquad{\sf{ 7290 = P \bigg[ \dfrac{108}{100} \bigg]^2 }}}}

{:\implies{\qquad{\sf{ 7290 = P \bigg[ \cancel\dfrac{108}{100} \bigg]^2 }}}}

{:\implies{\qquad{\sf{ 7290 = P \bigg[ 1.08 \bigg]^2 }}}}

{:\implies{\qquad{\sf{ 7290 = P \times 1.1664 }}}}

{:\implies{\qquad{\sf{  P = \cancel\dfrac{7290}{  1.1664} }}}}

\large \: \: \: \: {\qquad{:\implies{\underline{\boxed{\red{\sf{ ₹ \: 6250 }}}}}}}{\blue{\bigstar}}

Therefore :

❝ The invested sum was 6250.

{\pink{\underline{\purple{▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬}}}}

Answered by tname3345
21

Step-by-step explanation:

given :

  • sum = 8%

  • amounted = 7290

  • in two years= 2

to find :

  • Find the sum invested

solution :

  • =P(1+(R/100))^n

  • 7290=x(1+0.08)^2

  • 7290=x(1.08)^2

  • 7290-1.1664x

  • x=7290/1.1664

  • x=6250

  • sum reserved = 6250

  • thus, the answer is 6250

Similar questions