Math, asked by satrudhansingh3913, 11 months ago

A sum of money is borrowed at compound interest payable annually. the interest for second and third year rupees 330 and rupees 335 respectively. find the sum.​

Answers

Answered by sanjeevk28012
0

Given :

A sum of money is borrowed at compound interest payable annually

The interest for second year = I_2 = Rs 330

The interest for third year = I_3 = Rs 335

To Find :

The sum of money borrowed

Solution :

Let The sum of money borrowed = p

From compound Interest

Amount = Principal × (1+\dfrac{Rate}{ 100})^{Time}

∵  Interest = Amount - Principal

i.e  Interest = Principal × (1+\dfrac{Rate}{ 100})^{Time} - Principal

For second year, t = 2

  I_2 = p × (1+\dfrac{Rate}{ 100})^{2} - p  × (1+\dfrac{Rate}{ 100})^{}

i.e Rs 330 = p  × (1+\dfrac{Rate}{ 100})^{}  [  (1+\dfrac{Rate}{ 100})^{} - 1 ]                          

Or,  Rs 330 = p  × (1+\dfrac{Rate}{ 100})^{}  × \dfrac{Rate}{100}                                    .....................1

For Third year, t = 3    

  I_3 = p × (1+\dfrac{Rate}{ 100})^{3} - p× (1+\dfrac{Rate}{ 100})^{2}

i.e Rs 335 = p × (1+\dfrac{Rate}{ 100})^{2} [  (1+\dfrac{Rate}{ 100})^{} - 1 ]                        

Or, Rs 335 = p × (1+\dfrac{Rate}{ 100})^{2} × \dfrac{Rate}{100}                ....................2

From eq 1 and eq 2 , we get

  \dfrac{Rs 335}{Rs 330} = \dfrac{p[(1+\dfrac{Rate}{ 100})^{2}\dfrac{Rate}{100}  ]}{p[(1+\dfrac{Rate}{ 100})^{}\dfrac{Rate}{100} ]}

or, \dfrac{Rs 335}{Rs 330}  =    1 + \dfrac{Rate}{100}

i.e   \dfrac{67}{66}  = 1 + \dfrac{Rate}{100}

or,   \dfrac{67}{66}  - 1 = \dfrac{Rate}{100}

Or,    \dfrac{1}{66}  =  \dfrac{Rate}{100}

Put the value of \dfrac{Rate}{100} into eq 1

Rs 330 = p  × (1+\dfrac{1}{ 66})^{}  × \dfrac{1}{66}

or, Rs 330 = p  × (\dfrac{67}{ 66})^{}  × \dfrac{1}{66}

∴  p = \dfrac{1437480}{67}

i.e Principal = Rs 21454.92

Hence, The Sum of principal borrowed is  Rs 21454.92  Answer

Similar questions