Math, asked by kamakshigupta, 11 months ago

A sum of money lent out at simple interest amounts to rs 5000 in 2 yrs and rs 11000in 5 yrs. Find the sum of money and rate of interest. ​

Answers

Answered by mysticd
1

i) Let \:the \:sum \:lent (Principal) = Rs \:x

 Let \:rate \:of \: interest = R

 Time (T) = 2 \:years

 Amount = Rs \: 5000

 \boxed { \pink { A = P\Big( 1 + \frac{RT}{100} \Big) }}

 \implies 5000 = x\Big( 1 + \frac{2R}{100}\Big)\:--(1)

ii) Let \:the \:sum \:lent (Principal) = Rs \:x

 Let \:rate \:of \: interest = R

 Time (T) = 5 \: years

 Amount = Rs \: 11000

 \implies 5000 = x\Big( 1 + \frac{5R}{100}\Big)\:--(2)

 Do \: (2) \div (1) ,\:we \:get

 \implies \frac{11}{5} = \frac{\Big( 1 + \frac{5R}{100}\Big) }{\Big( 1 + \frac{2R}{100}\Big) }

 \implies 11\Big( 1 + \frac{2R}{100}\Big) = 5\Big( 1 + \frac{5R}{100}\Big)

 \implies 11 + \frac{22R}{100} = 5+ \frac{25R}{100}

 \implies 11 - 5 =  \frac{25R}{100} -  \frac{22R}{100}

 \implies 6 = \frac{3R}{100}

 \implies 6 \times \frac{100}{3} = R

 \implies R = 200\%

/* Now ,Put value of R , in equation (1) ,we get */

 5000 = x \Big( 1 + \frac{2\times 200}{100}\Big)

 \implies 5000 = x \Big( 1 + 4\Big)

 \implies 5000 = 5x

 \implies x = \frac{5000}{5}

 \implies x = Rs \:1000

Therefore.,

 \red { Money \:lent } \green { = Rs \:1000}

 \red { Rate \:of \: interest } \green {= 200\% }

•••♪

Similar questions