A sum of Rs 480 is distributed to two persons A and B in the ralo of 3:5. Find the share of A and B.
Answers
Step-by-step explanation:
\text {A : B : C} = \dfrac{1}{5} : \dfrac{2}{3} : \dfrac{1}{4}A : B : C=
5
1
:
3
2
:
4
1
Make the denominators the same:
\text {A : B : C} = \dfrac{1 \times 12}{5 \times 12} : \dfrac{2 \times 20}{3 \times 20} : \dfrac{1 \times 15 }{4 \times 15}A : B : C=
5×12
1×12
:
3×20
2×20
:
4×15
1×15
\text {A : B : C} = \dfrac{12}{60} : \dfrac{40}{60} : \dfrac{15 }{60}A : B : C=
60
12
:
60
40
:
60
15
Multiply by 60 through:
\text {A : B : C} = 12: 40 : 15A : B : C=12:40:15
.
Let x be the constant ratio:
12x + 40x + 15x = 67x
.
Find 1 x:
67x = 536
Divide both sides by 67:
x = 8
.
Find each of their amount:
A = 12x = 12(8) = Rs 96
B = 40x = 40(8) = Rs 320
c = 15x = 15(8) = Rs 120
.
So the Rs 536 is divided as:
A : B : C = Rs 96 : Rs 320 : Rs 120
.
Answer: A = Rs 96 , B = Rs 320 , C = Rs 120
a+b =480
3x+5x=480
8x=480
x=480/8
x=60
so 3x=60*3=180
5x=60*5=300
so A's share =180
so B's share =300